Linux下的LD_PRELOAD环境变量与库打桩

Linux下的LD_PRELOAD环境变量与库打桩

LD_PRELOAD是Linux系统的一个环境变量,它可以影响程序的运行时的链接(Runtime linker),它允许你定义在程序运行前优先加载的动态链接库,一方面,我们可以以此功能来使用自己的或是更好的函数(比如,你可以使用Google开发的tcmalloc来提升效率),而另一方面,我们也可以向别人的程序注入程序,从而达到特定的目的。

我们下面以一个 foepn() 函数的例子来展示一下如何实现运行时库打桩。

正常库函数调用

首先,我们建立一个测试目录并在该目录下创建一个文本文件:

mkdir demo && cd demo
touch test.txt

然后,我们在测试目录下准备一个测试程序,在其中用 foepn() 函数打开我们刚刚创建的文本文件,这个过程应该是成功的,因为我们确实有这样一个文本文件:

// perload_test.c#include <stdio.h>int main(){printf("Calling the fopen() function \n");FILE *fd = fopen("test.txt", "r");if (!fd) {printf("fopen() returned NULL\n");return 1;}printf("fopen() suceeded\n");return 0;
}

我们编译运行这个 preload_test.c

gcc preload_test.c -o preload_test
./preload_test
# 输出:
# Calling the fopen() function
# fopen() suceeded

如我们所预期的,打开文件成功。

运行时库打桩

我们首先准备我们自己想要库打桩的函数 foepn(),在这个函数中无论怎么样都会返回错误:

// myfopen.c#include <stdio.h>FILE *fopen(const char *path, const char *node) {printf("Always failing fopen in myfopen()\n");return NULL;
}

将它编译成一个共享库 myfopen.so

gcc -shared -fpic myfopen.c -o myfopen.so

然后将其添加到 LD_PRELOAD 环境变量:

export LD_PRELOAD=/home/song/demo/myfopem.so

现在我们在来运行一下刚才编译的 preload 程序(无需重新编译):

./preload
# 输出:
# Calling the fopen() function
# Always failing fopen in myfopen()
# fopen() returned NULL

虽然目录下确实有这个文本文件可以被打开,但是由于执行的是我们自己的 fopen() 函数,无论如何都会返回错误。这样就成功地使用我们自己的 fopen() 函数完成了运行时库打桩,在运行时,会优先执行环境变量 LD_PRELOAD 中指定的库打桩函数。

警告:测试完之后记得 unset LD_PRELOAD,否则你会发现你什么文件也打不开了,因为系统级的 fopen() 函数已经被我们打桩替换掉了,不信的话可以在unset之前随便vim一个文本试一下。所以,使用库打桩机制时一定要慎重,否则可能造成不堪设想的后果。

库打桩的应用

库打桩机制有很多有意思的应用场景

  • 通过添加某些语句,可以追踪自己的程序对某些库函数的调用情况
  • 我们可以以此功能来使用自己的或是更好的函数(比如,你可以使用Google开发的tcmalloc来提升效率)
  • 可以向别人的程序注入程序,从而达到特定的目的

Ref:

https://fengmuzi2003.gitbook.io/csapp3e/di-07-zhang-lian-jie

https://www.bilibili.com/video/BV1RK4y1R7Kf?p=7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532697.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2019年蓝桥杯第一题

第一题 标题&#xff1a;组队&#xff08;本题总分&#xff1a;5 分&#xff09; 作为篮球队教练&#xff0c;你需要从以下名单中选出 1 号位至 5 号位各一名球员&#xff0c; 组成球队的首发阵容。 每位球员担任 1 号位至 5 号位时的评分如下表所示。请你计算首发阵容 1 号位…

深度学习编译:MLIR初步

深度学习编译MLIR初步 深度模型的推理引擎 目前深度模型的推理引擎按照实现方式大体分为两类&#xff1a;解释型推理引擎和编译型推理引擎。 解释型推理引擎 一般包含模型解析器&#xff0c;模型解释器&#xff0c;模型优化器。 模型解析器负责读取和解析模型文件&#xff…

深入浅出LLVM

深入浅出LLVM 转自&#xff1a;https://www.jianshu.com/p/1367dad95445 什么是LLVM&#xff1f; LLVM项目是模块化、可重用的编译器以及工具链技术的集合。 美国计算机协会 (ACM) 将其2012 年软件系统奖项颁给了LLVM&#xff0c;之前曾经获得此奖项的软件和技术包括:Java、A…

蓝桥杯真题训练 2019.2题

2019第二题 标题&#xff1a;年号字串&#xff08;本题总分&#xff1a;5 分&#xff09; 小明用字母 A 对应数字 1&#xff0c;B 对应 2&#xff0c;以此类推&#xff0c;用 Z 对应 26。对于 27 以上的数字&#xff0c;小明用两位或更长位的字符串来对应&#xff0c;例如 AA…

一分钟系列:什么是虚拟内存?

一分钟系列&#xff1a;什么是虚拟内存&#xff1f; 转自&#xff1a;https://mp.weixin.qq.com/s/opMgZrXV-lfgOWrNUMKweg 注&#xff1a;一分钟系列的篇幅都不长&#xff0c;适合吃饭蹲坑、地铁公交上食用&#xff5e; 内存对于用户来说就是一个字节数组&#xff0c;我们可…

蓝桥杯真题训练 2019.3题

标题&#xff1a;数列求值 &#xff08;本题总分&#xff1a;10 分&#xff09;### 给定数列 1, 1, 1, 3, 5, 9, 17, …&#xff0c;从第 4 项开始&#xff0c;每项都是前 3 项的和。求 第 20190324 项的最后 4 位数字。 【答案提交】 这是一道结果填空的题&#xff0c;你只需…

11-Kafka

1 Kafka Kafka是一个分布式流式数据平台&#xff0c;它具有三个关键特性 Message System: Pub-Sub消息系统Availability & Reliability&#xff1a;以容错及持久化的方式存储数据记录流Scalable & Real time 1.1 Kafka架构体系 Kafka系统中存在5个关键组件 Producer…

虚拟内存精粹

虚拟内存精粹 标题&#xff1a;虚拟内存精粹 作者&#xff1a;潘建锋 原文&#xff1a;HTTPS://strikefreedom.top/memory-management–virtual-memory 导言 虚拟内存是当今计算机系统中最重要的抽象概念之一&#xff0c;它的提出是为了更加有效地管理内存并且降低内存出错的概…

蓝桥杯真题训练 2019.4题

标题&#xff1a; 数的分解&#xff08;本题总分&#xff1a;10 分&#xff09; 【问题描述】 把 2019 分解成 3 个各不相同的正整数之和&#xff0c;并且要求每个正整数都不包 含数字 2 和 4&#xff0c;一共有多少种不同的分解方法&#xff1f; 注意交换 3 个整数的顺序被视…

深度学习自动编译和优化技术调研

深度学习自动编译和优化技术调研 转自&#xff1a;https://moqi.com.cn/blog/deeplearning/ 作者&#xff1a;墨奇科技全栈开发 在墨奇科技&#xff0c;我们需要将一些包含深度神经网络&#xff08;DNN&#xff09;的 AI 算法移植到边缘端的设备&#xff0c; 这些设备往往使用 …

三元组数据处理系统

include<stdio.h> include<stdlib.h> define OK 1 define ERROR 0 define OVERFLOW -2 typedef int Status; typedef float ElemType; typedef ElemType *Triplet; // 声明Triplet为ElemType指针类型 //三元组的初始化 Status initTriplet(Triplet &T, E…

Copy-On-Write COW机制

Copy-On-Write COW机制 转自&#xff1a;https://zhuanlan.zhihu.com/p/48147304 作者&#xff1a;Java3y 前言 只有光头才能变强 在读《Redis设计与实现》关于哈希表扩容的时候&#xff0c;发现这么一段话&#xff1a; 执行BGSAVE命令或者BGREWRITEAOF命令的过程中&#xff0c…

实验报告:抽象数据类型的表现和实现

实验报告&#xff1a;抽象数据类型的表现和实现 实验内容 基本要求&#xff1a; 设计实现抽象数据类型“三元组”&#xff0c;要求动态分配内存。每个三元组由任意三个实数的序列构成&#xff0c;基本操作包括&#xff1a;创建一个三元组&#xff0c;取三元组的任意一个分量&…

关于x86、x86_64/x64、amd64和arm64/aarch64

关于x86、x86_64/x64、amd64和arm64/aarch64 转自&#xff1a;https://www.jianshu.com/p/2753c45af9bf 为什么叫x86和x86_64和AMD64? 为什么大家叫x86为32位系统&#xff1f; 为什么软件版本会注明 for amd64版本&#xff0c;不是intel64呢&#xff1f; x86是指intel的开…

实验报告: 线性表的基本操作及应用

实验报告&#xff1a; 线性表的基本操作及应用 实验内容 基本要求&#xff1a; &#xff08;1&#xff09;实现单链表的创建&#xff1b;&#xff08;2&#xff09;实现单链表的插入&#xff1b;&#xff08;3&#xff09;实现单链表的删除 &#xff08;4&#xff09;实现单链…

TVM:源码编译安装

TVM&#xff1a;Linux源码编译安装 笔者环境&#xff1a; OS&#xff1a;Ubuntu 18.04 CMake&#xff1a;3.10.2 gcc&#xff1a;7.5.0 cuda&#xff1a;11.1 编译安装过程总览 本文将简介 tvm 的编译安装过程&#xff0c;包含两个步骤&#xff1a; 通过C代码构建共享库设置相…

第2章线性表的基本使用及其cpp示例(第二章汇总,线性表都在这里)

2.1线性表的定义和特点 【类型定义&#xff1a; *是n个元素的有限序列 *除了第一个元素没有直接前驱和最后一个没有直接后驱之外&#xff0c;其余的每个元素只有一个直接前驱和直接后驱&#xff1b; &#xff08;a1,a2…an&#xff09; 【特征&#xff1a; *有穷性&#xff1…

TVM:通过Python接口(AutoTVM)来编译和优化模型

TVM&#xff1a;通过Python接口&#xff08;AutoTVM&#xff09;来编译和优化模型 上次我们已经介绍了如何从源码编译安装 tvm&#xff0c;本文我们将介绍在本机中使用 tvm Python 接口来编译优化模型的一个demo。 TVM 是一个深度学习编译器框架&#xff0c;有许多不同的模块…

TVM:在树莓派上部署预训练的模型

TVM&#xff1a;在树莓派上部署预训练的模型 之前我们已经介绍如何通过Python接口&#xff08;AutoTVM&#xff09;来编译和优化模型。本文将介绍如何在远程&#xff08;如本例中的树莓派&#xff09;上部署预训练的模型。 在设备上构建 TVM Runtime 首先我们需要再远程设备…

2.2线性表的顺序表

2.2.1线性表的顺序表示和实现------顺序映像 【顺序存储】在【查找时】的时间复杂度为【O(1)】&#xff0c;因为它的地址是连续的&#xff0c;只要知道首元素的地址&#xff0c;根据下标可以很快找到指定位置的元素 【插入和删除】操作由于可能要在插入前或删除后对元素进行移…