深入浅出LLVM

深入浅出LLVM

转自:https://www.jianshu.com/p/1367dad95445

什么是LLVM?

LLVM项目是模块化、可重用的编译器以及工具链技术的集合。

美国计算机协会 (ACM) 将其2012 年软件系统奖项颁给了LLVM,之前曾经获得此奖项的软件和技术包括:Java、Apache、 Mosaic、the World Wide Web、Smalltalk、UNIX、Eclipse等等。创始人:Chris Lattner亦是Swift之父。

趣闻:Chris Latter本来只是想写一个底层的虚拟机,这也是LLVM名字的由来,low level virtual machine,跟Java的JVM虚拟机一样,可是后来,llvm从来没有被用作过虚拟机,哪怕LLVM的名气已经传开了。所以人们决定仍然叫他LLVM,更多的时候只是当作“商标”一样的感觉在使用,其实它跟虚拟机没有半毛钱关系。官方描述如下
The name “LLVM” itself is not an acronym; it is the full name of the project. “LLVM”这个名称本身不是首字母缩略词; 它是项目的全名。

编译器架构

传统编译器架构

在这里插入图片描述

  • Frontend:前端
    词法分析、语法分析、语义分析、生成中间代码
  • Optimizer:优化器
    中间代码优化
  • Backend:后端
    生成机器码

LLVM架构

在这里插入图片描述

  • 不同的前端后端使用统一的中间代码LLVM Intermediate Representation (LLVM IR)

  • 如果需要支持一种新的编程语言,那么只需要实现一个新的前端

  • 如果需要支持一种新的硬件设备,那么只需要实现一个新的后端

  • 优化阶段是一个通用的阶段,它针对的是统一的LLVM IR,不论是支持新的编程语言,还是支持新的硬件设备,都不需要对优化阶段做修改

  • 相比之下,GCC的前端和后端没分得太开,前端后端耦合在了一起。所以GCC为了支持一门新的语言,或者为了支持一个新的目标平台,就 变得特别困难

  • LLVM现在被作为实现各种静态和运行时编译语言的通用基础结构(GCC家族、Java、.NET、Python、Ruby、Scheme、Haskell、D等)

什么是Clang

LLVM项目的一个子项目,基于LLVM架构的C/C++/Objective-C编译器前端。

*相比于GCC,Clang具有如下优点*

  • 编译速度快:在某些平台上,Clang的编译速度显著的快过GCC(Debug模式下编译OC速度比GGC快3倍)
  • 占用内存小:Clang生成的AST所占用的内存是GCC的五分之一左右
  • 模块化设计:Clang采用基于库的模块化设计,易于 IDE 集成及其他用途的重用
  • 诊断信息可读性强:在编译过程中,Clang 创建并保留了大量详细的元数据 (metadata),有利于调试和错误报告
  • 设计清晰简单,容易理解,易于扩展增强

在这里插入图片描述

LLVM整体架构,前端用的是clang,广义的LLVM是指整个LLVM架构,一般狭义的LLVM指的是LLVM后端(包含代码优化和目标代码生成)。

源代码(c/c++)经过clang–> 中间代码(经过一系列的优化,优化用的是Pass) --> 机器码

OC源文件的编译过程

这里用Xcode创建一个Test项目,然后cd到main.m的上一路径。
命令行查看编译的过程:$ clang -ccc-print-phases main.m

$ clang -ccc-print-phases main.m 0: input, "main.m", objective-c
1: preprocessor, {0}, objective-c-cpp-output
2: compiler, {1}, ir
3: backend, {2}, assembler
4: assembler, {3}, object
5: linker, {4}, image
6: bind-arch, "x86_64", {5}, image
  1. 找到main.m文件
  2. 预处理器,处理include、import、宏定义
  3. 编译器编译,编译成IR中间代码
  4. 后端,生成目标代码
  5. 汇编
  6. 链接其他动态库静态库
  7. 编译成适合某个架构的代码

查看preprocessor(预处理)的结果:$ clang -E main.m
这个命令敲出,终端就会打印许多信息,大致如下:

# 1 "main.m"
# 1 "<built-in>" 1
# 1 "<built-in>" 3
# 353 "<built-in>" 3
# 1 "<command line>" 1
# 1 "<built-in>" 2
# 1 "main.m" 2
.
.
.int main(int argc, const char * argv[]) {
@autoreleasepool {NSLog(@"Hello, World!");
}
return 0;
}

词法分析

词法分析,生成Token:$ clang -fmodules -E -Xclang -dump-tokens main.m
将代码分成一个个小单元(token)

举例如下:

void test(int a, int b){int c = a + b - 3;}
void 'void'  [StartOfLine]  Loc=<main.m:18:1>
identifier 'test'    [LeadingSpace] Loc=<main.m:18:6>
l_paren '('     Loc=<main.m:18:10>
int 'int'       Loc=<main.m:18:11>
identifier 'a'   [LeadingSpace] Loc=<main.m:18:15>
comma ','       Loc=<main.m:18:16>
int 'int'    [LeadingSpace] Loc=<main.m:18:18>
identifier 'b'   [LeadingSpace] Loc=<main.m:18:22>
r_paren ')'     Loc=<main.m:18:23>
l_brace '{'     Loc=<main.m:18:24>
int 'int'    [StartOfLine] [LeadingSpace]   Loc=<main.m:19:5>
identifier 'c'   [LeadingSpace] Loc=<main.m:19:9>
equal '='    [LeadingSpace] Loc=<main.m:19:11>
identifier 'a'   [LeadingSpace] Loc=<main.m:19:13>
plus '+'     [LeadingSpace] Loc=<main.m:19:15>
identifier 'b'   [LeadingSpace] Loc=<main.m:19:17>
minus '-'    [LeadingSpace] Loc=<main.m:19:19>
numeric_constant '3'     [LeadingSpace] Loc=<main.m:19:21>
semi ';'        Loc=<main.m:19:22>
r_brace '}'  [StartOfLine]  Loc=<main.m:20:1>
eof ''      Loc=<main.m:20:2>

可以看出,词法分析的时候,将上面的代码拆分一个个token,后面数字表示某一行的第几个字符,例如第一个void,表示第18行第一个字符。

AST-抽象语法树

语法分析,生成语法树(AST,Abstract Syntax Tree):$ clang -fmodules -fsyntax-only -Xclang -ast-dump main.m

通过语法树,我们能知道这个代码是做什么的。

还是刚刚的test函数,生成语法树如下:

|-FunctionDecl 0x7fa1439f5630 <line:18:1, line:20:1> line:18:6 test 'void (int, int)'
| |-ParmVarDecl 0x7fa1439f54b0 <col:11, col:15> col:15 used a 'int'
| |-ParmVarDecl 0x7fa1439f5528 <col:18, col:22> col:22 used b 'int'
| `-CompoundStmt 0x7fa142167c88 <col:24, line:20:1>
|   `-DeclStmt 0x7fa142167c70 <line:19:5, col:22>
|     `-VarDecl 0x7fa1439f5708 <col:5, col:21> col:9 c 'int' cinit
|       `-BinaryOperator 0x7fa142167c48 <col:13, col:21> 'int' '-'
|         |-BinaryOperator 0x7fa142167c00 <col:13, col:17> 'int' '+'
|         | |-ImplicitCastExpr 0x7fa1439f57b8 <col:13> 'int' <LValueToRValue>
|         | | `-DeclRefExpr 0x7fa1439f5768 <col:13> 'int' lvalue ParmVar 0x7fa1439f54b0 'a' 'int'
|         | `-ImplicitCastExpr 0x7fa1439f57d0 <col:17> 'int' <LValueToRValue>
|         |   `-DeclRefExpr 0x7fa1439f5790 <col:17> 'int' lvalue ParmVar 0x7fa1439f5528 'b' 'int'
|         `-IntegerLiteral 0x7fa142167c28 <col:21> 'int' 3`-<undeserialized declarations>

在终端敲出的时候,终端很直观的帮我们用颜色区分。我们可以用图形显示如下:

在这里插入图片描述

LLVM IR

LLVM IR有3种表示形式(本质是等价的)

  • text:便于阅读的文本格式,类似于汇编语言,拓展名.ll, $ clang -S -emit-llvm main.m
  • memory:内存格式
  • bitcode:二进制格式,拓展名.bc, $ clang -c -emit-llvm main.m

我们以text形式编译查看:

; Function Attrs: noinline nounwind optnone ssp uwtable
define void @test(i32, i32) #2 {%3 = alloca i32, align 4%4 = alloca i32, align 4%5 = alloca i32, align 4store i32 %0, i32* %3, align 4store i32 %1, i32* %4, align 4%6 = load i32, i32* %3, align 4%7 = load i32, i32* %4, align 4%8 = add nsw i32 %6, %7%9 = sub nsw i32 %8, 3store i32 %9, i32* %5, align 4ret void
}

IR基本语法

注释以分号 ; 开头
全局标识符以@开头,局部标识符以%开头
alloca,在当前函数栈帧中分配内存
i32,32bit,4个字节的意思
align,内存对齐
store,写入数据
load,读取数据
官方语法参考 https://llvm.org/docs/LangRef.html

应用与实践

我们的开发都是基于源码开发,所以我们首先要进行源码下载和编译。

源码下载

# 下载LLVM
$ git clone https://git.llvm.org/git/llvm.git/# 下载clang
$ cd llvm/tools
$ git clone https://git.llvm.org/git/clang.git/# 备注:clang是llvm的子项目,但是它们的源码是分开的,我们需要将clang放在llvm/tools目录下。

源码编译

这里我们在终端敲出的clang是xcode默认内置clang编译器,我们自己要进行LLVM开发的话,需要编译属于我们自己的clang编译器。

# 首先安装cmake和ninja(先安装brew,https://brew.sh/)
$ brew install cmake
$ brew install ninja# ninja如果安装失败,可以直接从github获取release版放入【/usr/local/bin】中
# https://github.com/ninja-build/ninja/releases# 在LLVM源码同级目录下新建一个【llvm_build】目录(最终会在【llvm_build】目录下生成【build.ninja】$ cd llvm_build
$ cmake -G Ninja ../llvm -DCMAKE_INSTALL_PREFIX=LLVM的安装路径# 备注:生成build.ninja,就表示编译成功,-DCMAKE_INSTALL_PREFIX 表示编译好的东西放在指定的路径,-D表示参数。# 更多cmake相关选项,可以参考: https://llvm.org/docs/CMake.html

接下来依次执行编译、安装指令

$ ninja
# 编译完毕后, 【llvm_build】目录大概 21.05 G(这个真的是好大啊)
$ ninja install

然后到这里我们的编译就完成了。

另一种方式是通过Xcode编译,生成Xcode项目再进行编译,但是速度很慢(可能需要1个多小时)。

# 方法如下:
# 在llvm同级目录下新建一个【llvm_xcode】目录
$ cd llvm_xcode
$ cmake -G Xcode ../llvm

应用与实践的参考

  • libclang、libTooling
    官方参考:https://clang.llvm.org/docs/Tooling.html
    应用:语法树分析、语言转换等
  • Clang插件开发
    官方参考
    1、https://clang.llvm.org/docs/ClangPlugins.html
    2、https://clang.llvm.org/docs/ExternalClangExamples.html
    3、https://clang.llvm.org/docs/RAVFrontendAction.html
    应用:代码检查(命名规范、代码规范)等
  • Pass开发
    官方参考:https://llvm.org/docs/WritingAnLLVMPass.html
    应用:代码优化、代码混淆等
  • 开发新的编程语言
    1、 https://llvm-tutorial-cn.readthedocs.io/en/latest/index.html
    2、https://kaleidoscope-llvm-tutorial-zh-cn.readthedocs.io/zh_CN/latest/

参考:
https://juejin.im/post/5bfba01df265da614273939a

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯真题训练 2019.2题

2019第二题 标题&#xff1a;年号字串&#xff08;本题总分&#xff1a;5 分&#xff09; 小明用字母 A 对应数字 1&#xff0c;B 对应 2&#xff0c;以此类推&#xff0c;用 Z 对应 26。对于 27 以上的数字&#xff0c;小明用两位或更长位的字符串来对应&#xff0c;例如 AA…

一分钟系列:什么是虚拟内存?

一分钟系列&#xff1a;什么是虚拟内存&#xff1f; 转自&#xff1a;https://mp.weixin.qq.com/s/opMgZrXV-lfgOWrNUMKweg 注&#xff1a;一分钟系列的篇幅都不长&#xff0c;适合吃饭蹲坑、地铁公交上食用&#xff5e; 内存对于用户来说就是一个字节数组&#xff0c;我们可…

蓝桥杯真题训练 2019.3题

标题&#xff1a;数列求值 &#xff08;本题总分&#xff1a;10 分&#xff09;### 给定数列 1, 1, 1, 3, 5, 9, 17, …&#xff0c;从第 4 项开始&#xff0c;每项都是前 3 项的和。求 第 20190324 项的最后 4 位数字。 【答案提交】 这是一道结果填空的题&#xff0c;你只需…

11-Kafka

1 Kafka Kafka是一个分布式流式数据平台&#xff0c;它具有三个关键特性 Message System: Pub-Sub消息系统Availability & Reliability&#xff1a;以容错及持久化的方式存储数据记录流Scalable & Real time 1.1 Kafka架构体系 Kafka系统中存在5个关键组件 Producer…

虚拟内存精粹

虚拟内存精粹 标题&#xff1a;虚拟内存精粹 作者&#xff1a;潘建锋 原文&#xff1a;HTTPS://strikefreedom.top/memory-management–virtual-memory 导言 虚拟内存是当今计算机系统中最重要的抽象概念之一&#xff0c;它的提出是为了更加有效地管理内存并且降低内存出错的概…

蓝桥杯真题训练 2019.4题

标题&#xff1a; 数的分解&#xff08;本题总分&#xff1a;10 分&#xff09; 【问题描述】 把 2019 分解成 3 个各不相同的正整数之和&#xff0c;并且要求每个正整数都不包 含数字 2 和 4&#xff0c;一共有多少种不同的分解方法&#xff1f; 注意交换 3 个整数的顺序被视…

深度学习自动编译和优化技术调研

深度学习自动编译和优化技术调研 转自&#xff1a;https://moqi.com.cn/blog/deeplearning/ 作者&#xff1a;墨奇科技全栈开发 在墨奇科技&#xff0c;我们需要将一些包含深度神经网络&#xff08;DNN&#xff09;的 AI 算法移植到边缘端的设备&#xff0c; 这些设备往往使用 …

三元组数据处理系统

include<stdio.h> include<stdlib.h> define OK 1 define ERROR 0 define OVERFLOW -2 typedef int Status; typedef float ElemType; typedef ElemType *Triplet; // 声明Triplet为ElemType指针类型 //三元组的初始化 Status initTriplet(Triplet &T, E…

Copy-On-Write COW机制

Copy-On-Write COW机制 转自&#xff1a;https://zhuanlan.zhihu.com/p/48147304 作者&#xff1a;Java3y 前言 只有光头才能变强 在读《Redis设计与实现》关于哈希表扩容的时候&#xff0c;发现这么一段话&#xff1a; 执行BGSAVE命令或者BGREWRITEAOF命令的过程中&#xff0c…

实验报告:抽象数据类型的表现和实现

实验报告&#xff1a;抽象数据类型的表现和实现 实验内容 基本要求&#xff1a; 设计实现抽象数据类型“三元组”&#xff0c;要求动态分配内存。每个三元组由任意三个实数的序列构成&#xff0c;基本操作包括&#xff1a;创建一个三元组&#xff0c;取三元组的任意一个分量&…

关于x86、x86_64/x64、amd64和arm64/aarch64

关于x86、x86_64/x64、amd64和arm64/aarch64 转自&#xff1a;https://www.jianshu.com/p/2753c45af9bf 为什么叫x86和x86_64和AMD64? 为什么大家叫x86为32位系统&#xff1f; 为什么软件版本会注明 for amd64版本&#xff0c;不是intel64呢&#xff1f; x86是指intel的开…

实验报告: 线性表的基本操作及应用

实验报告&#xff1a; 线性表的基本操作及应用 实验内容 基本要求&#xff1a; &#xff08;1&#xff09;实现单链表的创建&#xff1b;&#xff08;2&#xff09;实现单链表的插入&#xff1b;&#xff08;3&#xff09;实现单链表的删除 &#xff08;4&#xff09;实现单链…

TVM:源码编译安装

TVM&#xff1a;Linux源码编译安装 笔者环境&#xff1a; OS&#xff1a;Ubuntu 18.04 CMake&#xff1a;3.10.2 gcc&#xff1a;7.5.0 cuda&#xff1a;11.1 编译安装过程总览 本文将简介 tvm 的编译安装过程&#xff0c;包含两个步骤&#xff1a; 通过C代码构建共享库设置相…

第2章线性表的基本使用及其cpp示例(第二章汇总,线性表都在这里)

2.1线性表的定义和特点 【类型定义&#xff1a; *是n个元素的有限序列 *除了第一个元素没有直接前驱和最后一个没有直接后驱之外&#xff0c;其余的每个元素只有一个直接前驱和直接后驱&#xff1b; &#xff08;a1,a2…an&#xff09; 【特征&#xff1a; *有穷性&#xff1…

TVM:通过Python接口(AutoTVM)来编译和优化模型

TVM&#xff1a;通过Python接口&#xff08;AutoTVM&#xff09;来编译和优化模型 上次我们已经介绍了如何从源码编译安装 tvm&#xff0c;本文我们将介绍在本机中使用 tvm Python 接口来编译优化模型的一个demo。 TVM 是一个深度学习编译器框架&#xff0c;有许多不同的模块…

TVM:在树莓派上部署预训练的模型

TVM&#xff1a;在树莓派上部署预训练的模型 之前我们已经介绍如何通过Python接口&#xff08;AutoTVM&#xff09;来编译和优化模型。本文将介绍如何在远程&#xff08;如本例中的树莓派&#xff09;上部署预训练的模型。 在设备上构建 TVM Runtime 首先我们需要再远程设备…

2.2线性表的顺序表

2.2.1线性表的顺序表示和实现------顺序映像 【顺序存储】在【查找时】的时间复杂度为【O(1)】&#xff0c;因为它的地址是连续的&#xff0c;只要知道首元素的地址&#xff0c;根据下标可以很快找到指定位置的元素 【插入和删除】操作由于可能要在插入前或删除后对元素进行移…

TVM:交叉编译和RPC

TVM&#xff1a;交叉编译和RPC 之前我们介绍了 TVM 的安装、本机demo和树莓派远程demo。本文将介绍了在 TVM 中使用 RPC 进行交叉编译和远程设备执行。 通过交叉编译和 RPC&#xff0c;我们可以在本地机器上编译程序&#xff0c;然后在远程设备上运行它。 当远程设备资源有限…

2.3单链表的基本使用及其cpp示例

2.3线性表的链式表现与实现 2.3.1.1单链表 【特点&#xff1a; *用一组任意的存储单元存储线性表的数据元素 *利用指针实现用不同相邻的存储单元存放逻辑上相邻的元素 *每个元素ai&#xff0c;除存储本身信息外&#xff0c;还存储其直接后继的元素&#xff08;后一个元素的地址…

TVM:简介

TVM&#xff1a;简介概述 Apache TVM 是一个用于 CPU、GPU 和机器学习加速器的开源机器学习编译器框架。它旨在使机器学习工程师能够在任何硬件后端上高效地优化和运行计算。本教程的目的是通过定义和演示关键概念&#xff0c;引导您了解 TVM 的所有主要功能。新用户应该能够从…