Copy-On-Write COW机制

Copy-On-Write COW机制

转自:https://zhuanlan.zhihu.com/p/48147304

作者:Java3y

前言

只有光头才能变强

在读《Redis设计与实现》关于哈希表扩容的时候,发现这么一段话:

执行BGSAVE命令或者BGREWRITEAOF命令的过程中,Redis需要创建当前服务器进程的子进程,而大多数操作系统都采用写时复制(copy-on-write)来优化子进程的使用效率,所以在子进程存在期间,服务器会提高负载因子的阈值,从而避免在子进程存在期间进行哈希表扩展操作,避免不必要的内存写入操作,最大限度地节约内存。

触及到知识的盲区了,于是就去搜了一下copy-on-write写时复制这个技术究竟是怎么样的。发现涉及的东西蛮多的,也挺难读懂的。于是就写下这篇笔记来记录一下我学习copy-on-write的过程。

本文力求简单讲清copy-on-write这个知识点,希望大家看完能有所收获。

关于fork(状态机的复制)和exec(状态机的重置)的理解可参考:12 [虚拟化] 进程抽象;fork,execve,exit

一、Linux下的copy-on-write

在说明Linux下的copy-on-write机制前,我们首先要知道两个函数:fork()exec()。需要注意的是exec()并不是一个特定的函数, 它是一组函数的统称, 它包括了execl()execlp()execv()execle()execve()execvp()

1.1简单来用用fork

首先我们来看一下fork()函数是什么鬼:

fork is an operation whereby a process creates a copy of itself.

fork是类Unix操作系统上创建进程的主要方法。fork用于创建子进程(等同于当前进程的副本)。

  • 新的进程要通过老的进程复制自身得到,这就是fork!

如果接触过Linux,我们会知道Linux下init进程是所有进程的爹(相当于Java中的Object对象)

  • Linux的进程都通过init进程或init的子进程fork(vfork)出来的。

下面以例子说明一下fork吧:

#include <unistd.h>  
#include <stdio.h>  int main ()   
{   pid_t fpid; //fpid表示fork函数返回的值  int count=0;// 调用fork,创建出子进程  fpid=fork();// 所以下面的代码有两个进程执行!if (fpid < 0)   printf("创建进程失败!/n");   else if (fpid == 0) {  printf("我是子进程,由父进程fork出来/n");   count++;  }  else {  printf("我是父进程/n");   count++;  }  printf("统计结果是: %d/n",count);  return 0;  
}  

得到的结果输出为:

我是子进程,由父进程fork出来统计结果是: 1我是父进程统计结果是: 1

解释一下:

  • fork作为一个函数被调用。这个函数会有两次返回,将子进程的PID返回给父进程,0返回给子进程。(如果小于0,则说明创建子进程失败)。
  • 再次说明:当前进程调用fork(),会创建一个跟当前进程完全相同的子进程(除了pid),所以子进程同样是会执行fork()之后的代码。

所以说:

  • 父进程在执行if代码块的时候,fpid变量的值是子进程的pid
  • 子进程在执行if代码块的时候,fpid变量的值是0

1.2再来看看exec()函数

从上面我们已经知道了fork会创建一个子进程。子进程的是父进程的副本

exec函数的作用就是:装载一个新的程序(可执行映像)覆盖当前进程内存空间中的映像,从而执行不同的任务

  • exec系列函数在执行时会直接替换掉当前进程的地址空间

我去画张图来理解一下:

在这里插入图片描述

参考资料:

  • 程序员必备知识——fork和exec函数详解https://blog.csdn.net/bad_good_man/article/details/49364947
  • linux中fork()函数详解(原创!!实例讲解):https://blog.csdn.net/jason314/article/details/5640969
  • linux c语言 fork() 和 exec 函数的简介和用法:https://blog.csdn.net/nvd11/article/details/8856278
  • Linux下Fork与Exec使用:https://www.cnblogs.com/hicjiajia/archive/2011/01/20/1940154.html
  • Linux 系统调用 —— fork()内核源码剖析:https://blog.csdn.net/chen892704067/article/details/76596225

1.3回头来看Linux下的COW是怎么一回事

fork()会产生一个和父进程完全相同的子进程(除了pid)

如果按传统的做法,会直接将父进程的数据拷贝到子进程中,拷贝完之后,父进程和子进程之间的数据段和堆栈是相互独立的

在这里插入图片描述

但是,以我们的使用经验来说:往往子进程都会执行exec()来做自己想要实现的功能。

  • 所以,如果按照上面的做法的话,创建子进程时复制过去的数据是没用的(因为子进程执行exec(),原有的数据会被清空)

既然很多时候复制给子进程的数据是无效的,于是就有了Copy On Write这项技术了,原理也很简单:

  • fork创建出的子进程,与父进程共享内存空间。也就是说,如果子进程不对内存空间进行写入操作的话,内存空间中的数据并不会复制给子进程,这样创建子进程的速度就很快了!(不用复制,直接引用父进程的物理空间)。
  • 并且如果在fork函数返回之后,子进程第一时间exec一个新的可执行映像,那么也不会浪费时间和内存空间了。

另外的表达方式:

在fork之后exec之前两个进程用的是相同的物理空间(内存区),子进程的代码段、数据段、堆栈都是指向父进程的物理空间,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个
当父子进程中有更改相应段的行为发生时,再为子进程相应的段分配物理空间
如果不是因为exec,内核会给子进程的数据段、堆栈段分配相应的物理空间(至此两者有各自的进程空间,互不影响),而代码段继续共享父进程的物理空间(两者的代码完全相同)。
而如果是因为exec,由于两者执行的代码不同,子进程的代码段也会分配单独的物理空间。

Copy On Write技术实现原理:

fork()之后,kernel把父进程中所有的内存页的权限都设为read-only,然后子进程的地址空间指向父进程。当父子进程都只读内存时,相安无事。当其中某个进程写内存时,CPU硬件检测到内存页是read-only的,于是触发页异常中断(page-fault),陷入kernel的一个中断例程。中断例程中,kernel就会把触发的异常的页复制一份,于是父子进程各自持有独立的一份。

Copy On Write技术好处是什么?

  • COW技术可减少分配和复制大量资源时带来的瞬间延时
  • COW技术可减少不必要的资源分配。比如fork进程时,并不是所有的页面都需要复制,父进程的代码段和只读数据段都不被允许修改,所以无需复制

Copy On Write技术缺点是什么?

  • 如果在fork()之后,父子进程都还需要继续进行写操作,那么会产生大量的分页错误(页异常中断page-fault),这样就得不偿失。

几句话总结Linux的Copy On Write技术:

  • fork出的子进程共享父进程的物理空间,当父子进程有内存写入操作时,read-only内存页发生中断,将触发的异常的内存页复制一份(其余的页还是共享父进程的)。
  • fork出的子进程功能实现和父进程是一样的。如果有需要,我们会用exec()把当前进程映像替换成新的进程文件,完成自己想要实现的功能。

参考资料:

  • Linux进程基础:http://www.cnblogs.com/vamei/archive/2012/09/20/2694466.html
  • Linux写时拷贝技术(copy-on-write)http://www.cnblogs.com/biyeymyhjob/archive/2012/07/20/2601655.html
  • 当你在 Linux 上启动一个进程时会发生什么?https://zhuanlan.zhihu.com/p/33159508
  • Linux fork()所谓的写时复制(COW)到最后还是要先复制再写吗?https://www.zhihu.com/question/265400460
  • 写时拷贝(copy-on-write) COW技术https://blog.csdn.net/u012333003/article/details/25117457
  • Copy-On-Write 写时复制原理https://blog.csdn.net/ppppppppp2009/article/details/22750939

二、文件系统的COW

下面来看看文件系统中的COW是啥意思:

Copy-on-write在对数据进行修改的时候,不会直接在原来的数据位置上进行操作,而是重新找个位置修改,这样的好处是一旦系统突然断电,重启之后不需要做Fsck。好处就是能保证数据的完整性,掉电的话容易恢复

  • 比如说:要修改数据块A的内容,先把A读出来,写到B块里面去。如果这时候断电了,原来A的内容还在!

参考资料:

  • 文件系统中的 copy-on-write 模式有什么具体的好处?https://www.zhihu.com/question/19782224/answers/created
  • 新一代 Linux 文件系统 btrfs 简介:https://www.ibm.com/developerworks/cn/linux/l-cn-btrfs/

三、解释一下Redis的COW

基于上面的基础,我们应该已经了解COW这么一项技术了。

下面我来说一下我对《Redis设计与实现》那段话的理解:

  • Redis在持久化时,如果是采用BGSAVE命令或者BGREWRITEAOF的方式,那Redis会fork出一个子进程来读取数据,从而写到磁盘中
  • 总体来看,Redis还是读操作比较多。如果子进程存在期间,发生了大量的写操作,那可能就会出现很多的分页错误(页异常中断page-fault),这样就得耗费不少性能在复制上。
  • 而在rehash阶段上,写操作是无法避免的。所以Redis在fork出子进程之后,将负载因子阈值提高,尽量减少写操作,避免不必要的内存写入操作,最大限度地节约内存。

参考资料:

  • fork()后copy on write的一些特性:https://zhoujianshi.github.io/articles/2017/fork()%E5%90%8Ecopy%20on%20write%E7%9A%84%E4%B8%80%E4%BA%9B%E7%89%B9%E6%80%A7/index.html
  • 写时复制:[https://miao1007.github.io/gitbook/java/juc/cow/](

最后

最后我们再来看一下写时复制的思想(摘录自维基百科):

写入时复制(英语:Copy-on-write,简称COW)是一种计算机程序设计领域的优化策略。其核心思想是,如果有多个调用者(callers)同时请求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变。这过程对其他的调用者都是透明的(transparently)。此作法主要的优点是如果调用者没有修改该资源,就不会有副本(private copy)被建立,因此多个调用者只是读取操作时可以共享同一份资源。

至少从本文我们可以总结出:

  • Linux通过Copy On Write技术极大地减少了Fork的开销
  • 文件系统通过Copy On Write技术一定程度上保证数据的完整性

参考资料:

  • 写时复制,写时拷贝,写时分裂,Copy on write:https://my.oschina.net/dubenju/blog/815836
  • 不会产奶的COW(Copy-On-Write)https://www.jianshu.com/p/b2fb2ee5e

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第2章线性表的基本使用及其cpp示例(第二章汇总,线性表都在这里)

2.1线性表的定义和特点 【类型定义&#xff1a; *是n个元素的有限序列 *除了第一个元素没有直接前驱和最后一个没有直接后驱之外&#xff0c;其余的每个元素只有一个直接前驱和直接后驱&#xff1b; &#xff08;a1,a2…an&#xff09; 【特征&#xff1a; *有穷性&#xff1…

2.3单链表的基本使用及其cpp示例

2.3线性表的链式表现与实现 2.3.1.1单链表 【特点&#xff1a; *用一组任意的存储单元存储线性表的数据元素 *利用指针实现用不同相邻的存储单元存放逻辑上相邻的元素 *每个元素ai&#xff0c;除存储本身信息外&#xff0c;还存储其直接后继的元素&#xff08;后一个元素的地址…

TVM:简介

TVM&#xff1a;简介概述 Apache TVM 是一个用于 CPU、GPU 和机器学习加速器的开源机器学习编译器框架。它旨在使机器学习工程师能够在任何硬件后端上高效地优化和运行计算。本教程的目的是通过定义和演示关键概念&#xff0c;引导您了解 TVM 的所有主要功能。新用户应该能够从…

2.3.3单链表的双向链表

2.3.3双向链表 插入、删除 指在前驱和后驱方向都能游历&#xff08;遍历&#xff09;的线性链表 双向链表的每个结点有两个指针域 【结构】&#xff1a;prior data next 双链表通常采用带头结点的循环链表形式 可理解为首位相接的数据“圈”&#xff0c;每个结点都可以向前…

nvidia-smi 命令详解

nvidia-smi 命令详解 简介 nvidia-smi - NVIDIA System Management Interface program nvidia smi&#xff08;也称为NVSMI&#xff09;为来自 Fermi 和更高体系结构系列的 nvidia Tesla、Quadro、GRID 和 GeForce 设备提供监控和管理功能。GeForce Titan系列设备支持大多数…

2.4一元多项式的表示及相加,含cpp算法

2.4一元多项式的表示及相加 n阶多项式的表示&#xff1a; n阶多项式有n1项 指数按升幂排序 【 优点&#xff1a; 多项式的项数可以动态增长&#xff0c;不存在存储溢出的问题插入&#xff0c;删除方便&#xff0c;不移动元素 【表示&#xff1a; 有两个数据域&#xff0c;一…

TVM:使用Tensor Expression (TE)来处理算子

TVM&#xff1a;使用Tensor Expression (TE)来处理算子 在本教程中&#xff0c;我们将聚焦于在 TVM 中使用张量表达式&#xff08;TE&#xff09;来定义张量计算和实现循环优化。TE用纯函数语言描述张量计算&#xff08;即每个表达式都没有副作用&#xff09;。当在 TVM 的整体…

4-数据结构-串的学习

4.1串类型的定义 1.串&#xff1a;&#xff08;或字符串&#xff09; 串是由多个字符组成的有限序列&#xff0c;记作&#xff1a;S‘c1c2c3…cn’ (n>0) 其中S是串的名字&#xff0c;‘c1c2c3…cn’ 是串值 ci是串中字符 n是串的长度&#xff0c;表示字符的数目 空串&a…

5-数据结构-数组的学习

5.1数组的定义 定义&#xff1a; 由一组类型相同的数据元素构成的有序集合&#xff0c;每个数据元素称为一个数据元素&#xff08;简称元素&#xff09;&#xff0c;每个元素受n&#xff08;n>1&#xff09;个线性关系的约束&#xff0c;每个元素在n个线性关系中的序号i1、…

timm 视觉库中的 create_model 函数详解

timm 视觉库中的 create_model 函数详解 最近一年 Vision Transformer 及其相关改进的工作层出不穷&#xff0c;在他们开源的代码中&#xff0c;大部分都用到了这样一个库&#xff1a;timm。各位炼丹师应该已经想必已经对其无比熟悉了&#xff0c;本文将介绍其中最关键的函数之…

C--数据结构--树的学习

6.2.1二叉树的性质 1.二叉树 性质&#xff1a; 1.若二叉树的层次从1开始&#xff0c;则在二叉树的第i层最多有2^(i-1)个结点 2.深度为k的二叉树最多有2^k -1个结点 &#xff08;k>1&#xff09; 3.对任何一颗二叉树&#xff0c;如果其叶结点个数为n0,度为2的非叶结点个数…

C语言—sort函数比较大小的快捷使用--algorithm头文件下

sort函数 一般情况下要将一组数从的大到小排序或从小到大排序&#xff0c;要定义一个新的函数排序。 而我们也可以直接使用在函数下的sort函数&#xff0c;只需加上头文件&#xff1a; #include<algorithm> using namespace std;sort格式&#xff1a;sort(首元素地址&…

AI编译器与传统编译器的联系与区别

AI编译器与传统编译器的区别与联系 总结整理自知乎问题 针对神经网络的编译器和传统编译器的区别和联系是什么&#xff1f;。 文中提到的答主的知乎主页&#xff1a;金雪锋、杨军、蓝色、SunnyCase、贝壳与知了、工藤福尔摩 笔者本人理解 为了不用直接手写机器码&#xff0…

python学习1:注释\变量类型\转换函数\转义字符\运算符

python基础学习 与大多数语言不同&#xff0c;python最具特色的就是使用缩进来表示代码块&#xff0c;不需要使用大括号 {} 。缩进的空格数是可变的&#xff0c;但是同一个代码块的语句必须包含相同的缩进空格数。 &#xff08;一个tab4个空格&#xff09; Python语言中常见的…

python 学习2 /输入/ 输出 /列表 /字典

python基础学习第二天 输入输出 xinput("输入内容") print(x)input输出&#xff1a; eval :去掉字符串外围的引号&#xff0c;按照python的语法执行内容 aeval(12) print(a)eval输出样式&#xff1a; 列表 建立&#xff0c;添加&#xff0c;插入&#xff0c;删去…

快速排序 C++

快速排序 C 本文图示借鉴自清华大学邓俊辉老师数据结构课程。 快速排序的思想 快速排序是分治思想的典型应用。该排序算法可以原地实现&#xff0c;即空间复杂度为 O(1)O(1)O(1)&#xff0c;而时间复杂度为 O(nlogn)O(nlogn)O(nlogn) 。 算法将待排序的序列 SSS 分为两个子…

llvm与gcc

llvm与gcc llvm 是一个编译器&#xff0c;也是一个编译器架构&#xff0c;是一系列编译工具&#xff0c;也是一个编译器工具链&#xff0c;开源 C11 实现。 gcc 相对于 clang 的优势&#xff1a; gcc 支持更过语言前端&#xff0c;如 Java, Ada, FORTRAN, Go等gcc 支持更多地 …

攻防世界web新手区解题 view_source / robots / backup

1**. view_source** 题目描述&#xff1a;X老师让小宁同学查看一个网页的源代码&#xff0c;但小宁同学发现鼠标右键好像不管用了。 f12查看源码即可发现flag 2. robots 题目描述&#xff1a;X老师上课讲了Robots协议&#xff0c;小宁同学却上课打了瞌睡&#xff0c;赶紧来教教…

听GPT 讲Rust源代码--src/tools(25)

File: rust/src/tools/clippy/clippy_lints/src/methods/suspicious_command_arg_space.rs 在Rust源代码中&#xff0c;suspicious_command_arg_space.rs文件位于clippy_lints工具包的methods目录下&#xff0c;用于实现Clippy lint SUSPICIOUS_COMMAND_ARG_SPACE。 Clippy是Ru…

Java一次编译,到处运行是如何实现的

Java一次编译&#xff0c;到处运行是如何实现的 转自&#xff1a;https://cloud.tencent.com/developer/article/1415194 &#xff08;排版微调&#xff09; JAVA编译运行总览 Java是一种高级语言&#xff0c;要让计算机执行你撰写的Java程序&#xff0c;也得通过编译程序的…