首先看一下斐波那契的矩阵表示:
数列的递推公式为:f(1)=1,f(2)=2,f(n)=f(n-1)+f(n-2)(n>=3)
用矩阵表示为:
进一步,可以得出直接推导公式:
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<cmath> #include<queue> #define N 1000 using namespace std;int f[N]; int fibonacci_1(int n){//递归if(n==1 || n==0) return 1;return fibonacci_1(n-1) + fibonacci_1(n-2); }int fibonacci_2(int n){//递推f[0] = f[1] = 1;for(int i=2; i<=n; ++i)f[i] = f[i-1] + f[i-2];return f[n]; }int fibonacci_3(int n){//非递归int f1=1, f2=1, f3;for(int i=2; i<=n; ++i){f3 = f1+f2;f2 = f1;f1 = f3;}return f1; }struct Fibonacci{int a11, a12, a21, a22;Fibonacci(){}Fibonacci(int a1, int a2, int a3, int a4){a11 = a1;a22 = a2;a21 = a3;a22 = a4;}Fibonacci operator *(Fibonacci x){Fibonacci* tmp = new Fibonacci();tmp->a11 = a11*x.a11 + a21*x.a21;tmp->a12 = a11*x.a12 + a21*x.a22;tmp->a21 = a21*x.a11 + a22*x.a21;tmp->a22 = a21*x.a21 + a22*x.a22;return *tmp;} };int fibonacci_4(int n){//矩阵 + 快速幂方法Fibonacci a(1, 1, 1, 0);Fibonacci ans(1, 0, 0, 1);while(n){//快速幂方法 if(n&1) ans = ans*a;a=a*a;n>>=1;}return ans.a11; } int main(){int n;cin>>n;cout<<"fibonacci_1: "<<fibonacci_1(n)<<endl;cout<<"fibonacci_2: "<<fibonacci_2(n)<<endl;cout<<"fibonacci_3: "<<fibonacci_3(n)<<endl;cout<<"fibonacci_4: "<<fibonacci_4(n)<<endl;return 0; }