python进行数据分析:数据预处理

六大数据类型 见python基本功

import numpy as np  
import pandas as pd

数据预处理

缺失值处理

float_data = pd.Series([1.2, -3.5, np.nan, 0])  
float_data
0    1.2  
1   -3.5  
2    NaN  
3    0.0  
dtype: float64

查看缺失值

float_data.isna()
0    False  
1    False  
2     True  
3    False  
dtype: bool
string_data = pd.Series(["aardvark", np.nan, None, "avocado"])  
string_data  
string_data.isna()  
float_data = pd.Series([1, 2, None], dtype='float64')  
float_data  
float_data.isna()
0    False  
1    False  
2     True  
dtype: bool

删除缺失值

data = pd.Series([1, np.nan, 3.5, np.nan, 7])  
data.dropna()
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data[data.notna()]
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data = pd.DataFrame([[1., 6.5, 3.], [1., np.nan, np.nan],  [np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])  
print(data)  
data.dropna()
     0    1    2  
0  1.0  6.5  3.0  
1  1.0  NaN  NaN  
2  NaN  NaN  NaN  
3  NaN  6.5  3.0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |

data.dropna(how="all")##删除行全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

data[4] = np.nan  
data  
data.dropna(axis="columns", how="all")##删除列全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 2 | NaN | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

df = pd.DataFrame(np.random.standard_normal((7, 3)))  
df.iloc[:4, 1] = np.nan  
df.iloc[:2, 2] = np.nan  
print(df)  
df.dropna()#删除含缺失值的行
          0         1         2  
0  0.476985       NaN       NaN  
1 -0.577087       NaN       NaN  
2  0.523772       NaN  1.343810  
3 -0.713544       NaN -2.370232  
4 -1.860761 -0.860757  0.560145  
5 -1.265934  0.119827 -1.063512  
6  0.332883 -2.359419 -0.199543

|
| 0 | 1 | 2 |
| — | — | — | — |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.dropna(thresh=2)# 删除至少有两个缺失值的行

|
| 0 | 1 | 2 |
| — | — | — | — |
| 2 | 0.523772 | NaN | 1.343810 |
| 3 | -0.713544 | NaN | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

缺失值填充

df.fillna(0)##缺失值填充为0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.000000 | 0.000000 |
| 1 | -0.577087 | 0.000000 | 0.000000 |
| 2 | 0.523772 | 0.000000 | 1.343810 |
| 3 | -0.713544 | 0.000000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.fillna({1: 0.5, 2: 0})#不同列填充不同缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.500000 | 0.000000 |
| 1 | -0.577087 | 0.500000 | 0.000000 |
| 2 | 0.523772 | 0.500000 | 1.343810 |
| 3 | -0.713544 | 0.500000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df = pd.DataFrame(np.random.standard_normal((6, 3)))  
df.iloc[2:, 1] = np.nan  
df.iloc[4:, 2] = np.nan  
df

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | NaN | 0.069877 |
| 3 | 0.246674 | NaN | 1.004812 |
| 4 | 1.327195 | NaN | NaN |
| 5 | 0.022185 | NaN | NaN |

df.fillna(method="ffill")#向下填充

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | 0.377984 | 1.004812 |
| 5 | 0.022185 | 0.377984 | 1.004812 |

df.fillna(method="ffill", limit=2)#向下填充,限制填充数量=2

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | NaN | 1.004812 |
| 5 | 0.022185 | NaN | 1.004812 |

data = pd.Series([1., np.nan, 3.5, np.nan, 7])  
data.fillna(data.mean())#以平均值填充
0    1.000000  
1    3.833333  
2    3.500000  
3    3.833333  
4    7.000000  
dtype: float64

重复值处理

data = pd.DataFrame({"k1": ["one", "two"] * 3 + ["two"],  "k2": [1, 1, 2, 3, 3, 4, 4]})  
data

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |
| 6 | two | 4 |

查看是否存在重复值

data.duplicated()
0    False  
1    False  
2    False  
3    False  
4    False  
5    False  
6     True  
dtype: bool

删除重复值

data.drop_duplicates()

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |

data["v1"] = range(7)  
data

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 5 | two | 4 | 5 |
| 6 | two | 4 | 6 |

data.drop_duplicates(subset=["k1"])#只要k1列有重复值就去重,保留第一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |

data.drop_duplicates(["k1", "k2"], keep="last")#只要k1&k2有重复值就去重,保留最后一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 6 | two | 4 | 6 |

函数映射

data = pd.DataFrame({"food": ["bacon", "pulled pork", "bacon",  "pastrami", "corned beef", "bacon",  "pastrami", "honey ham", "nova lox"],  "ounces": [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})  
data

|
| food | ounces |
| — | — | — |
| 0 | bacon | 4.0 |
| 1 | pulled pork | 3.0 |
| 2 | bacon | 12.0 |
| 3 | pastrami | 6.0 |
| 4 | corned beef | 7.5 |
| 5 | bacon | 8.0 |
| 6 | pastrami | 3.0 |
| 7 | honey ham | 5.0 |
| 8 | nova lox | 6.0 |

map()将字典中的key映射为value

meat_to_animal = {  "bacon": "pig",  "pulled pork": "pig",  "pastrami": "cow",  "corned beef": "cow",  "honey ham": "pig",  "nova lox": "salmon"  
}
data["animal"] = data["food"].map(meat_to_animal)  
data

|
| food | ounces | animal |
| — | — | — | — |
| 0 | bacon | 4.0 | pig |
| 1 | pulled pork | 3.0 | pig |
| 2 | bacon | 12.0 | pig |
| 3 | pastrami | 6.0 | cow |
| 4 | corned beef | 7.5 | cow |
| 5 | bacon | 8.0 | pig |
| 6 | pastrami | 3.0 | cow |
| 7 | honey ham | 5.0 | pig |
| 8 | nova lox | 6.0 | salmon |

def get_animal(x):  return meat_to_animal[x]  
data["food"].map(get_animal)
0       pig  
1       pig  
2       pig  
3       cow  
4       cow  
5       pig  
6       cow  
7       pig  
8    salmon  
Name: food, dtype: object

替换

data = pd.Series([1., -999., 2., -999., -1000., 3.])  
data
0       1.0  
1    -999.0  
2       2.0  
3    -999.0  
4   -1000.0  
5       3.0  
dtype: float64

单值替换

data.replace(-999, np.nan)#将-999替换为缺失值
0       1.0  
1       NaN  
2       2.0  
3       NaN  
4   -1000.0  
5       3.0  
dtype: float64

多值替换

data.replace([-999, -1000], np.nan)#将-999&-1000替换为缺失值
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    NaN  
5    3.0  
dtype: float64
data.replace([-999, -1000], [np.nan, 0])#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data.replace({-999: np.nan, -1000: 0})#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data = pd.DataFrame(np.arange(12).reshape((3, 4)),  index=["Ohio", "Colorado", "New York"],  columns=["one", "two", "three", "four"])
def transform(x):  return x[:4].upper()  data.index.map(transform)
Index(['OHIO', 'COLO', 'NEW '], dtype='object')
data.index = data.index.map(transform)  
data

|
| one | two | three | four |
| — | — | — | — | — |
| OHIO | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

重命名rename

data.rename(index=str.title, columns=str.upper)

|
| ONE | TWO | THREE | FOUR |
| — | — | — | — | — |
| Ohio | 0 | 1 | 2 | 3 |
| Colo | 4 | 5 | 6 | 7 |
| New | 8 | 9 | 10 | 11 |

data.rename(index={"OHIO": "INDIANA"},  columns={"three": "peekaboo"})

|
| one | two | peekaboo | four |
| — | — | — | — | — |
| INDIANA | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

数据分箱pd.cut&pd.qcut

  • • pd.cut() 将指定序列 x,按指定数量等间距的划分(根据值本身而不是这些值的频率选择均匀分布的bins),或按照指定间距划分

  • • pd.qcut() 将指定序列 x,划分为 q 个区间,使落在每个区间的记录数一致

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]  
age_categories = pd.cut(ages, bins)  
age_categories
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]  
Length: 12  
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
age_categories.codes  
age_categories.categories  
age_categories.categories[0]  
pd.value_counts(age_categories)
(18, 25]     5  
(25, 35]     3  
(35, 60]     3  
(60, 100]    1  
dtype: int64
pd.cut(ages, bins, right=False)
[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35, 60), [35, 60), [25, 35)]  
Length: 12  
Categories (4, interval[int64, left]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)]
group_names = ["Youth", "YoungAdult", "MiddleAged", "Senior"]  
pd.cut(ages, bins, labels=group_names)
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', 'MiddleAged', 'MiddleAged', 'YoungAdult']  
Length: 12  
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']
data = np.random.uniform(size=20)  
pd.cut(data, 4, precision=2)
[(0.32, 0.53], (0.74, 0.95], (0.74, 0.95], (0.53, 0.74], (0.11, 0.32], ..., (0.74, 0.95], (0.11, 0.32], (0.74, 0.95], (0.32, 0.53], (0.74, 0.95]]  
Length: 20  
Categories (4, interval[float64, right]): [(0.11, 0.32] < (0.32, 0.53] < (0.53, 0.74] < (0.74, 0.95]]
data = np.random.standard_normal(1000)  
quartiles = pd.qcut(data, 4, precision=2)  
quartiles  
pd.value_counts(quartiles)
(-2.96, -0.69]     250  
(-0.69, -0.032]    250  
(-0.032, 0.61]     250  
(0.61, 3.93]       250  
dtype: int64
pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.]).value_counts()
(-2.9499999999999997, -1.187]    100  
(-1.187, -0.0321]                400  
(-0.0321, 1.287]                 400  
(1.287, 3.928]                   100  
dtype: int64
data = pd.DataFrame(np.random.standard_normal((1000, 4)))  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047439 | 0.046069 | 0.024366 | -0.006350 |
| std | 0.997187 | 0.998359 | 1.008925 | 0.993665 |
| min | -3.428254 | -3.645860 | -3.184377 | -3.745356 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.366626 | 2.653656 | 3.525865 | 2.735527 |

col = data[2]  
col[col.abs() > 3]
55     3.260383  
230   -3.056990  
317   -3.184377  
777    3.525865  
Name: 2, dtype: float64
data[(data.abs() > 3).any(axis="columns")]

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 36 | -2.315555 | 0.457246 | -0.025907 | -3.399312 |
| 55 | 0.050188 | 1.951312 | 3.260383 | 0.963301 |
| 131 | 0.146326 | 0.508391 | -0.196713 | -3.745356 |
| 230 | -0.293333 | -0.242459 | -3.056990 | 1.918403 |
| 254 | -3.428254 | -0.296336 | -0.439938 | -0.867165 |
| 317 | 0.275144 | 1.179227 | -3.184377 | 1.369891 |
| 539 | -0.362528 | -3.548824 | 1.553205 | -2.186301 |
| 631 | 3.366626 | -2.372214 | 0.851010 | 1.332846 |
| 777 | -0.658090 | -0.207434 | 3.525865 | 0.283070 |
| 798 | 0.599947 | -3.645860 | 0.255475 | -0.549574 |

data[data.abs() > 3] = np.sign(data) * 3  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047378 | 0.047263 | 0.023821 | -0.005206 |
| std | 0.994634 | 0.994342 | 1.005685 | 0.989845 |
| min | -3.000000 | -3.000000 | -3.000000 | -3.000000 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.000000 | 2.653656 | 3.000000 | 2.735527 |

np.sign(data).head()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 0 | -1.0 | 1.0 | -1.0 | 1.0 |
| 1 | -1.0 | 1.0 | -1.0 | 1.0 |
| 2 | -1.0 | -1.0 | -1.0 | -1.0 |
| 3 | -1.0 | 1.0 | 1.0 | -1.0 |
| 4 | 1.0 | 1.0 | 1.0 | -1.0 |

随机重排列

df = pd.DataFrame(np.arange(5 * 7).reshape((5, 7)))  
df  
sampler = np.random.permutation(5)#permutation:产生0到n-1的所有整数的随机排列  
sampler
array([2, 4, 3, 0, 1])
df.take(sampler)#行随机排列

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

df.iloc[sampler]

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

column_sampler = np.random.permutation(7)  
column_sampler  
df.take(column_sampler, axis="columns")#列随机排列

|
| 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| — | — | — | — | — | — | — | — |
| 0 | 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| 1 | 13 | 9 | 8 | 10 | 11 | 7 | 12 |
| 2 | 20 | 16 | 15 | 17 | 18 | 14 | 19 |
| 3 | 27 | 23 | 22 | 24 | 25 | 21 | 26 |
| 4 | 34 | 30 | 29 | 31 | 32 | 28 | 33 |

随机采样

df.sample(n=3)# n指定采样的个数

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

choices = pd.Series([5, 7, -1, 6, 4])  
choices.sample(n=10, replace=True)
0    5  
1    7  
0    5  
0    5  
2   -1  
4    4  
2   -1  
2   -1  
0    5  
4    4  
dtype: int64

哑变量编码

df = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],  "data1": range(6)})  
df

|
| key | data1 |
| — | — | — |
| 0 | b | 0 |
| 1 | b | 1 |
| 2 | a | 2 |
| 3 | c | 3 |
| 4 | a | 4 |
| 5 | b | 5 |

pd.get_dummies(df["key"])

|
| a | b | c |
| — | — | — | — |
| 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 |

dummies = pd.get_dummies(df["key"], prefix="key")##前缀为key  
df_with_dummy = df[["data1"]].join(dummies)#合并数据集  
df_with_dummy

|
| data1 | key_a | key_b | key_c |
| — | — | — | — | — |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 1 | 0 | 0 |
| 3 | 3 | 0 | 0 | 1 |
| 4 | 4 | 1 | 0 | 0 |
| 5 | 5 | 0 | 1 | 0 |

mnames = ["movie_id", "title", "genres"]  
movies = pd.read_table("datasets/movielens/movies.dat", sep="::",  header=None, names=mnames, engine="python")  
movies[:10]

|
| movie_id | title | genres |
| — | — | — | — |
| 0 | 1 | Toy Story (1995) | Animation|Children’s|Comedy |
| 1 | 2 | Jumanji (1995) | Adventure|Children’s|Fantasy |
| 2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
| 3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
| 4 | 5 | Father of the Bride Part II (1995) | Comedy |
| 5 | 6 | Heat (1995) | Action|Crime|Thriller |
| 6 | 7 | Sabrina (1995) | Comedy|Romance |
| 7 | 8 | Tom and Huck (1995) | Adventure|Children’s |
| 8 | 9 | Sudden Death (1995) | Action |
| 9 | 10 | GoldenEye (1995) | Action|Adventure|Thriller |

dummies = movies["genres"].str.get_dummies("|")##将一列中以|分割的字段变成哑变量  
dummies.iloc[:10, :6]

|
| Action | Adventure | Animation | Children’s | Comedy | Crime |
| — | — | — | — | — | — | — |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 |
| 7 | 0 | 1 | 0 | 1 | 0 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9 | 1 | 1 | 0 | 0 | 0 | 0 |

movies_windic = movies.join(dummies.add_prefix("Genre_"))  
movies_windic.iloc[0]
movie_id                                       1  
title                           Toy Story (1995)  
genres               Animation|Children's|Comedy  
Genre_Action                                   0  
Genre_Adventure                                0  
Genre_Animation                                1  
Genre_Children's                               1  
Genre_Comedy                                   1  
Genre_Crime                                    0  
Genre_Documentary                              0  
Genre_Drama                                    0  
Genre_Fantasy                                  0  
Genre_Film-Noir                                0  
Genre_Horror                                   0  
Genre_Musical                                  0  
Genre_Mystery                                  0  
Genre_Romance                                  0  
Genre_Sci-Fi                                   0  
Genre_Thriller                                 0  
Genre_War                                      0  
Genre_Western                                  0  
Name: 0, dtype: object
np.random.seed(12345) # to make the example repeatable  
values = np.random.uniform(size=10)  
values  
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]  
pd.get_dummies(pd.cut(values, bins))

|
| (0.0, 0.2] | (0.2, 0.4] | (0.4, 0.6] | (0.6, 0.8] | (0.8, 1.0] |
| — | — | — | — | — | — |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 |
| 7 | 0 | 0 | 0 | 1 | 0 |
| 8 | 0 | 0 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 1 | 0 |

正则表达式

s = pd.Series([1, 2, 3, None])  
s  
s.dtype
dtype('float64')
s = pd.Series([1, 2, 3, None], dtype=pd.Int64Dtype())  
s  
s.isna()  
s.dtype
Int64Dtype()
s[3]  
s[3] is pd.NA
True
s = pd.Series([1, 2, 3, None], dtype="Int64")
s = pd.Series(['one', 'two', None, 'three'], dtype=pd.StringDtype())  
s
0      one  
1      two  
2     <NA>  
3    three  
dtype: string
df = pd.DataFrame({"A": [1, 2, None, 4],  "B": ["one", "two", "three", None],  "C": [False, None, False, True]})  
df  
df["A"] = df["A"].astype("Int64")  
df["B"] = df["B"].astype("string")  
df["C"] = df["C"].astype("boolean")  
df

|
| A | B | C |
| — | — | — | — |
| 0 | 1 | one | False |
| 1 | 2 | two | |
| 2 | | three | False |
| 3 | 4 | | True |

val = "a,b,  guido"  
val.split(",")
['a', 'b', '  guido']
pieces = [x.strip() for x in val.split(",")]  
pieces
['a', 'b', 'guido']
first, second, third = pieces  
first + "::" + second + "::" + third
'a::b::guido'
"::".join(pieces)
'a::b::guido'
"guido" in val  
val.index(",")  
val.find(":")
-1
val.index(":")
---------------------------------------------------------------------------  ValueError                                Traceback (most recent call last)  ~\AppData\Local\Temp\ipykernel_20552\2601145560.py in <module>  
----> 1 val.index(":")  ValueError: substring not found
val.count(",")
2
val.replace(",", "::")  
val.replace(",", "")
'ab  guido'
import re  
text = "foo    bar\t baz  \tqux"  
re.split(r"\s+", text)
['foo', 'bar', 'baz', 'qux']
regex = re.compile(r"\s+")  
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
['    ', '\t ', '  \t']
text = """Dave dave@google.com  
Steve steve@gmail.com  
Rob rob@gmail.com  
Ryan ryan@yahoo.com"""  
pattern = r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"  regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)
['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
m = regex.search(text)  
m  
text[m.start():m.end()]
'dave@google.com'
print(regex.match(text))
None
print(regex.sub("REDACTED", text))
Dave REDACTED  
Steve REDACTED  
Rob REDACTED  
Ryan REDACTED
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match("wesm@bright.net")  
m.groups()
('wesm', 'bright', 'net')
regex.findall(text)
[('dave', 'google', 'com'),  ('steve', 'gmail', 'com'),  ('rob', 'gmail', 'com'),  ('ryan', 'yahoo', 'com')]
print(regex.sub(r"Username: \1, Domain: \2, Suffix: \3", text))
Dave Username: dave, Domain: google, Suffix: com  
Steve Username: steve, Domain: gmail, Suffix: com  
Rob Username: rob, Domain: gmail, Suffix: com  
Ryan Username: ryan, Domain: yahoo, Suffix: com
data = {"Dave": "dave@google.com", "Steve": "steve@gmail.com",  "Rob": "rob@gmail.com", "Wes": np.nan}  
data = pd.Series(data)  
data  
data.isna()
Dave     False  
Steve    False  
Rob      False  
Wes       True  
dtype: bool
data.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes        NaN  
dtype: object
data_as_string_ext = data.astype('string')  
data_as_string_ext  
data_as_string_ext.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes       <NA>  
dtype: boolean
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
data.str.findall(pattern, flags=re.IGNORECASE)
Dave     [(dave, google, com)]  
Steve    [(steve, gmail, com)]  
Rob        [(rob, gmail, com)]  
Wes                        NaN  
dtype: object
matches = data.str.findall(pattern, flags=re.IGNORECASE).str[0]  
matches  
matches.str.get(1)
Dave     google  
Steve     gmail  
Rob       gmail  
Wes         NaN  
dtype: object
data.str[:5]
Dave     dave@  
Steve    steve  
Rob      rob@g  
Wes        NaN  
dtype: object
data.str.extract(pattern, flags=re.IGNORECASE)

|
| 0 | 1 | 2 |
| — | — | — | — |
| Dave | dave | google | com |
| Steve | steve | gmail | com |
| Rob | rob | gmail | com |
| Wes | NaN | NaN | NaN |

values = pd.Series(['apple', 'orange', 'apple',  'apple'] * 2)  
values  
pd.unique(values)  
pd.value_counts(values)
apple     6  
orange    2  
dtype: int64
values = pd.Series([0, 1, 0, 0] * 2)  
dim = pd.Series(['apple', 'orange'])  
values  
dim
0     apple  
1    orange  
dtype: object
dim.take(values)
0     apple  
1    orange  
0     apple  
0     apple  
0     apple  
1    orange  
0     apple  
0     apple  
dtype: object
fruits = ['apple', 'orange', 'apple', 'apple'] * 2  
N = len(fruits)  
rng = np.random.default_rng(seed=12345)  
df = pd.DataFrame({'fruit': fruits,  'basket_id': np.arange(N),  'count': rng.integers(3, 15, size=N),  'weight': rng.uniform(0, 4, size=N)},  columns=['basket_id', 'fruit', 'count', 'weight'])  
df

|
| basket_id | fruit | count | weight |
| — | — | — | — | — |
| 0 | 0 | apple | 11 | 1.564438 |
| 1 | 1 | orange | 5 | 1.331256 |
| 2 | 2 | apple | 12 | 2.393235 |
| 3 | 3 | apple | 6 | 0.746937 |
| 4 | 4 | apple | 5 | 2.691024 |
| 5 | 5 | orange | 12 | 3.767211 |
| 6 | 6 | apple | 10 | 0.992983 |
| 7 | 7 | apple | 11 | 3.795525 |

fruit_cat = df['fruit'].astype('category')  
fruit_cat
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
c = fruit_cat.array  
type(c)
pandas.core.arrays.categorical.Categorical
c.categories  
c.codes
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
dict(enumerate(c.categories))
{0: 'apple', 1: 'orange'}
df['fruit'] = df['fruit'].astype('category')  
df["fruit"]
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])  
my_categories
['foo', 'bar', 'baz', 'foo', 'bar']  
Categories (3, object): ['bar', 'baz', 'foo']
categories = ['foo', 'bar', 'baz']  
codes = [0, 1, 2, 0, 0, 1]  
my_cats_2 = pd.Categorical.from_codes(codes, categories)  
my_cats_2
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo', 'bar', 'baz']
ordered_cat = pd.Categorical.from_codes(codes, categories,  ordered=True)  
ordered_cat
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
my_cats_2.as_ordered()
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
rng = np.random.default_rng(seed=12345)  
draws = rng.standard_normal(1000)  
draws[:5]
array([-1.4238,  1.2637, -0.8707, -0.2592, -0.0753])
bins = pd.qcut(draws, 4)  
bins
[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687], (-0.675, 0.0134]]  
Length: 1000  
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] < (0.0134, 0.687] < (0.687, 3.211]]
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])  
bins  
bins.codes[:10]
array([0, 3, 0, 1, 1, 0, 0, 2, 2, 0], dtype=int8)
bins = pd.Series(bins, name='quartile')  
results = (pd.Series(draws)  .groupby(bins)  .agg(['count', 'min', 'max'])  .reset_index())  
results

|
| quartile | count | min | max |
| — | — | — | — | — |
| 0 | Q1 | 250 | -3.119609 | -0.678494 |
| 1 | Q2 | 250 | -0.673305 | 0.008009 |
| 2 | Q3 | 250 | 0.018753 | 0.686183 |
| 3 | Q4 | 250 | 0.688282 | 3.211418 |

results['quartile']
0    Q1  
1    Q2  
2    Q3  
3    Q4  
Name: quartile, dtype: category  
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']
N = 10_000_000  
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
categories = labels.astype('category')
labels.memory_usage(deep=True)  
categories.memory_usage(deep=True)
10000540
%time _ = labels.astype('category')
Wall time: 560 ms
%timeit labels.value_counts()  
%timeit categories.value_counts()
366 ms ± 9.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)  
67.6 ms ± 2.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
s = pd.Series(['a', 'b', 'c', 'd'] * 2)  
cat_s = s.astype('category')  
cat_s
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (4, object): ['a', 'b', 'c', 'd']
cat_s.cat.codes  
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
actual_categories = ['a', 'b', 'c', 'd', 'e']  
cat_s2 = cat_s.cat.set_categories(actual_categories)  
cat_s2
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (5, object): ['a', 'b', 'c', 'd', 'e']
cat_s.value_counts()  
cat_s2.value_counts()
a    2  
b    2  
c    2  
d    2  
e    0  
dtype: int64
cat_s3 = cat_s[cat_s.isin(['a', 'b'])]  
cat_s3  
cat_s3.cat.remove_unused_categories()
0    a  
1    b  
4    a  
5    b  
dtype: category  
Categories (2, object): ['a', 'b']
cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
pd.get_dummies(cat_s)

|
| a | b | c | d |
| — | — | — | — | — |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 1 | 0 |
| 7 | 0 | 0 | 0 | 1

|

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle给表空间添加容量

假如给SYSTEM表空间添加 查看文件位置和容量&#xff1a;Select * FROM DBA_DATA_FILES; FILE_NAME就是要修改的文件 查看每一个表空间的容量&#xff0c;单位MB&#xff1a; SELECT t.tablespace_name, round(SUM(bytes / (1024 * 1024)), 0) ts_size FROM dba_tablespaces…

大数据扫盲(2): 数据分析BI与ETL的紧密关系——ETL是成功BI的先决条件

着业务的发展每个企业都将产生越来越多的数据&#xff0c;然后这些数据本身并不能直接带来洞察力并产生业务价值。为了释放数据的潜力&#xff0c;数据分析BI&#xff08;商业智能&#xff09;成为了现代企业不可或缺的一部分。然而&#xff0c;在数据分析的背后&#xff0c;有…

【Linux网络】TCP UDP socket HTTP webSocket之间的区别

目录 一、OSI & TCP/IP模型 二、几者之间的关系 三、HTTP 四、Socket 五、WebSocket 5.1、WebSocket 优点 一、OSI & TCP/IP模型 首先我们要了解OSI七层模型&#xff0c;和预支对应的TCP/IP 四层的模型。 用下面的图可以看出&#xff0c;TCP UDP 工作在传输层&…

Word导出创建Adobe PDF其中emf图片公式马赛克化及文字缺失

软件版本 Word 2021 Visio 2019 Adobe Acrobat Pro 2020 问题描述 公式马赛克化&#xff0c;是指在Word中使用MathType编辑的公式&#xff0c;然后在Visio中使用图片(增强型图元文件)形式得到的粘贴对象&#xff0c;效果如下 文字缺失&#xff0c;是指Word导出→创建Adobe P…

一文学会lua脚本

文章目录 0.前言背景应用 1. 学习大纲1. 学习基本语法&#xff1a;2. 理解函数和模块&#xff1a;3. 深入数据结构&#xff1a;4. 高级特性和技巧&#xff1a;5. 实践项目&#xff1a; 2. Lua脚本2.1 学习基本语法2.2 理解函数和模块2.3 深入数据结构2.4 高级特性和技巧 3. 高级…

Hbase分布式安装

一、环境准备 启动zookeeper 启动hdfs 二、安装 上传安装包 1、解压 tar -zxf hbase-2.2.2-bin.tar.gz -C /opt/installs/2、更名 mv hbase-2.2.2/ hbase3、配置环境变量 [roothadoop11 conf]# vim /etc/profile export HBASE_HOME/opt/installs/hbase export PATH$PATH:$…

vr内容编辑软件降低了虚拟现实项目开发门槛

VR虚拟场景编辑器是一种专门用于创建、修改和设计虚拟场景的工具。它利用vr虚拟现实技术&#xff0c;让用户可以在三维空间中直接对场景进行操作和编辑。这种编辑器的出现&#xff0c;使得用户可以更加直观、自由地进行场景设计和制作&#xff0c;为诸多领域带来了新的可能性。…

Kafka生产者原理 kafka生产者发送流程 kafka消息发送到集群步骤 kafka如何发送消息 kafka详解

kafka尚硅谷视频&#xff1a; 10_尚硅谷_Kafka_生产者_原理_哔哩哔哩_bilibili ​ 1. producer初始化&#xff1a;加载默认配置&#xff0c;以及配置的参数&#xff0c;开启网络线程 2. 拦截器拦截 3. 序列化器进行消息key, value序列化 4. 进行分区 5. kafka broker集群 获取…

Linux常用命令——dhclient命令

在线Linux命令查询工具 dhclient 动态获取或释放IP地址 补充说明 dhclient命令使用动态主机配置协议动态的配置网络接口的网络参数。 语法 dhclient(选项)(参数)选项 0&#xff1a;指定dhcp客户端监听的端口号&#xff1b; -d&#xff1a;总是以前台方式运行程序&#x…

SpringBoot案例-文件上传

目录 简介 文件上传前端页面三要素 服务端接收文件 小结 本地储存 实现 代码优化 小结 阿里云OSS 阿里云 阿里云OSS 使用第三方服务--通用思路 准备工作 参照官方SDK代码&#xff0c;编写入门程序 集成使用 阿里云OSS-使用步骤 阿里云OSS使用步骤 参照SDK编写入…

深层次分析字符数组和字符串的区别是什么?

前言 &#xff08;1&#xff09;休闲时刻刷B站&#xff0c;看到一个卖课的&#xff0c;发视频问&#xff0c;char arr1[]{‘H’,‘E’,‘L’,‘L’,‘O’};和char arr2[]“HELLO”;区别是什么。 &#xff08;2&#xff09;看那个卖课博主一顿分析&#xff0c;最后成功得出&…

IT运维:使用数据分析平台监控DELL服务器

概述 在企业日常运维中&#xff0c;我们有着大量的服务器设备&#xff0c;设备故障一般可以通过常用的监控软件实现自动告警&#xff0c;但如果在管理运维中我们要做的不仅仅是发现故障&#xff0c;处理硬件故障&#xff0c;我们还需要进一步的了解&#xff0c;今年一共出现了多…

nodejs+vue+elementui农业产品信息网上商城管理系统_9927h

语言 node.js 框架&#xff1a;Express 前端:Vue.js 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;VScode 前端nodejsvueelementui,系统使用权限分别包括管理员、种植户和用户&#xff0c;其中管理员拥有着最大的权限&#xff0c;同时管理员的…

MySQL数据库 索引、事务、储存引擎

索引 索引的概念 索引是一个排序的列表&#xff0c;在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址&#xff08;类似于C语言的链表通过指针指向数据记录的内存地址&#xff09;。 使用索引后可以不用扫描全表来定位某行的数据&#xff0c;而是先通过索引表找…

【智算中心】GPU是如何改变世界的

现在有市场消息表示&#xff0c;NVIDIA正计划减少A800 GPU的产量&#xff0c;以促进其更高端的H800 GPU 的销售。很显然NVIDIA是希望从H800 GPU上获得更多销售量&#xff0c;从中国市场获得更多利益。而且最近一段时间有传闻美国要彻底封杀AI芯片的出口&#xff0c;让国内甚至连…

【java】LinkedList 和 ArrayList的简介与对比

Java LinkedList和 ArrayList 在使用上&#xff0c;几乎是一样的。由于LinkedList是基于双向链表的&#xff0c;会多出list.getFirst();获取头部元素等方法 链表&#xff08;Linked list&#xff09;是一种常见的基础数据结构&#xff0c;是一种线性表&#xff0c;但是并不会按…

掌握指针和数组:经典笔试题攻略(万字详解)

&#x1f341;博客主页&#xff1a;江池俊的博客 &#x1f4ab;收录专栏&#xff1a;C语言刷题专栏 &#x1f4a1;代码仓库&#xff1a;江池俊的代码仓库 &#x1f3aa;我的社区&#xff1a;GeekHub &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐ 文章目录 前…

电脑显示“Operating System not found”该怎么办?

“Operating System not found”是一种常见的电脑错误提示&#xff0c;这类错误会导致你无法成功启动Windows。那么电脑显示“Operating System not found”该怎么办呢&#xff1f; 方法1. 检查硬盘 首先&#xff0c;您可以测试硬盘是否存在问题。为此&#xff0c;您可以采取以…

基于JSP+Servlet+Mysql停车场管理系统(含实训报告)

TOC 一、系统介绍 项目类型&#xff1a;Java web项目 项目名称&#xff1a;基于JSPServlet的停车场管理系统 项目架构&#xff1a;B/S架构 开发语言&#xff1a;Java语言 前端技术&#xff1a;HTML、CSS、JS、JQuery等技术 后端技术&#xff1a;JSP、Servlet、JDBC等技术…

Python案例|Matplotlib库实现的数据分析

数据展示是数据分析和挖掘中的重要环节&#xff0c;通过图形的形式可以直观、清晰地呈现数据内在的规律。 本文所用数据采用上一篇案例实现后的数据表&#xff0c;数据存储在newbj_lianJia.csv文件中&#xff0c;具体代码如下。 import pandas as pd #导入库 import matplot…