java开源图像处理ku_83 项开源视觉 SLAM 方案够你用了吗?

原标题:83 项开源视觉 SLAM 方案够你用了吗?

公众号:3D视觉工坊

主要关注:3D视觉算法、SLAM、vSLAM、计算机视觉、深度学习、自动驾驶、图像处理以及技术干货分享

运营者和嘉宾介绍:运营者来自国内一线大厂的算法工程师,深研3D视觉、vSLAM、计算机视觉、点云处理、深度学习、自动驾驶、图像处理、三维重建等领域,特邀嘉宾包括国内外知名高校的博士硕士,旷视、商汤、百度、阿里等就职的算法大佬,欢迎一起交流学习~

前言

1. 本文由知乎作者小吴同学同步发布于https://zhuanlan.zhihu.com/p/115599978/并持续更新。

2. 本文简单将各种开源视觉SLAM方案分为以下 7 类(固然有不少文章无法恰当分类):

·Geometric SLAM

·Semantic / Learning SLAM

·Multi-Landmarks / Object SLAM

·VIO / VISLAM

·Dynamic SLAM

·Mapping

·Optimization

3. 由于本人自 2019 年 3 月开始整理,所以以下的代码除了经典的框架之外基本都集中在 19-20 年;此外个人比较关注 VO、物体级 SLAM 和多路标 SLAM,所以以下内容收集的也不完整,无法涵盖视觉SLAM 的所有研究,仅作参考。

一、Geometric SLAM(20 项)

这一类是传统的基于特征点、直接法或半直接法的 SLAM,虽说传统,但 2019 年也新诞生了 9 个开源方案。

1. PTAM

论文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed andAugmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposiumon. IEEE, 2007: 225-234.

代码:https://github.com/Oxford-PTAM/PTAM-GPL

工程地址:http://www.robots.ox.ac.uk/~gk/PTAM/

作者其他研究:http://www.robots.ox.ac.uk/~gk/publications.html

2. S-PTAM(双目 PTAM)

论文:Taihú Pire,Thomas Fischer, Gastón Castro,Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and AutonomousSystems, 2017.

代码:https://github.com/lrse/sptam

作者其他论文:Castro G,Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM throughconstrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.

3. MonoSLAM

论文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM:Real-time single camera SLAM[J]. IEEE transactions on patternanalysis and machine intelligence, 2007, 29(6): 1052-1067.

代码:https://github.com/hanmekim/SceneLib2

4. ORB-SLAM2

论文:Mur-Artal R, Tardós J D. Orb-slam2: Anopen-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEETransactions on Robotics, 2017, 33(5): 1255-1262.

代码:https://github.com/raulmur/ORB_SLAM2

作者其他论文:

单目半稠密建图:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

VIORB:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

多地图:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: arobust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.

以下 5, 6, 7, 8 几项是 TUM 计算机视觉组全家桶

5. DSO

论文:Engel J, Koltun V, Cremers D. Direct sparseodometry[J]. IEEE transactions on pattern analysis and machineintelligence, 2017, 40(3): 611-625.

代码:https://github.com/JakobEngel/dso

双目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry withstereo cameras[C]//Proceedings of the IEEE International Conference onComputer Vision. 2017: 3903-3911.

VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparsevisual-inertial odometry using dynamic marginalization[C]//2018 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2018:2510-2517.

6. LDSO

高翔在 DSO 上添加闭环的工作

论文:Gao X, Wang R, Demmel N, et al. LDSO: Directsparse odometry with loop closure[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:2198-2204.

代码:https://github.com/tum-vision/LDSO

7. LSD-SLAM

论文:Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//Europeanconference on computer vision. Springer, Cham, 2014: 834-849.

代码:https://github.com/tum-vision/lsd_slam

8. DVO-SLAM

论文:Kerl C, Sturm J, Cremers D. Dense visualSLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conferenceon Intelligent Robots and Systems. IEEE, 2013: 2100-2106.

代码 1:https://github.com/tum-vision/dvo_slam

代码 2:https://github.com/tum-vision/dvo

其他论文:

Kerl C, Sturm J,Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEEinternational conference on robotics and automation. IEEE, 2013:3748-3754.

Steinbrücker F,Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEEinternational conference on computer vision workshops (ICCV Workshops). IEEE, 2011:719-722.

9. SVO

苏黎世大学机器人与感知课题组

论文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEEinternational conference on robotics and automation (ICRA). IEEE, 2014:15-22.

代码:https://github.com/uzh-rpg/rpg_svo

Forster C, ZhangZ, Gassner M, et al. SVO: Semidirect visual odometry for monocular andmulticamera systems[J]. IEEE Transactions on Robotics, 2016,33(2): 249-265.

10. DSM

论文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparsemapping[J]. arXiv preprint arXiv:1904.06577, 2019.

代码:https://github.com/jzubizarreta/dsm

11. openvslam

论文:Sumikura S,Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedingsof the 27th ACM International Conference on Multimedia. 2019: 2292-2295.

代码:https://github.com/xdspacelab/openvslam

12. se2lam(地面车辆位姿估计的视觉里程计)

论文:Zheng F, Liu Y H. Visual-OdometricLocalization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:3556-3562.

代码:https://github.com/izhengfan/se2lam

作者的另外一项工作

论文:Zheng F, Tang H,Liu Y H. Odometry-vision-basedground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEEtransactions on cybernetics, 2018, 49(7): 2652-2663.

代码:https://github.com/izhengfan/se2clam

13. GraphSfM(基于图的并行大尺度 SFM)

论文:Chen Y, Shen S,Chen Y, et al. Graph-BasedParallel Large Scale Structure from Motion[J]. arXivpreprint arXiv:1912.10659, 2019.

代码:https://github.com/AIBluefisher/GraphSfM

14. LCSD_SLAM(松耦合的半直接法单目 SLAM)

论文:Lee S H, Civera J. Loosely-Coupledsemi-direct monocular SLAM[J]. IEEE Robotics and AutomationLetters, 2018, 4(2): 399-406.

代码:https://github.com/sunghoon031/LCSD_SLAM;谷歌学术 ;演示视频

作者另外一篇关于单目尺度的文章代码开源:Lee S H, deCroon G. Stability-based scale estimation for monocular SLAM[J]. IEEERobotics and Automation Letters, 2018, 3(2): 780-787.

15. RESLAM(基于边的 SLAM)

论文:Schenk F, Fraundorfer F. RESLAM: Areal-time robust edge-based SLAM system[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 154-160.

代码:https://github.com/fabianschenk/RESLAM

16. scale_optimization(将单目 DSO 拓展到双目)

论文:Mo J, Sattar J. ExtendingMonocular Visual Odometry to Stereo Camera System by Scale Optimization[C].International Conference on Intelligent Robots and Systems (IROS), 2019.

代码:https://github.com/jiawei-mo/scale_optimization

17. BAD-SLAM(直接法 RGB-D SLAM)

论文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2019:134-144.

代码:https://github.com/ETH3D/badslam

18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

论文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedingsof the IEEE International Conference on Computer Vision. 2019:1110-1120.

代码:https://github.com/zdzhaoyong/GSLAM

19. ARM-VO(运行于 ARM 处理器上的单目 VO)

论文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for groundvehicles on ARM CPUs[J]. Machine Vision and Applications, 2019:1-10.

代码:https://github.com/zanazakaryaie/ARM-VO

20. cvo-rgbd(直接法 RGB-D VO)

论文:Ghaffari M, Clark W, Bloch A, et al. ContinuousDirect Sparse Visual Odometry from RGB-D Images[J]. arXivpreprint arXiv:1904.02266, 2019.

代码:https://github.com/MaaniGhaffari/cvo-rgbd

二、Semantic / Learning SLAM(12 项)

SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM 的某一个步骤(比如 VO,闭环等)。个人对后者没太关注,也同样欢迎大家在issue中分享。

21. MsakFusion

论文:Runz M, Buffier M, Agapito L. Maskfusion:Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEEInternational Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018:10-20.

代码:https://github.com/martinruenz/maskfusion

22. SemanticFusion

论文:McCormac J, Handa A, Davison A, et al. Semanticfusion:Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEEInternational Conference on Robotics and automation (ICRA). IEEE, 2017:4628-4635.

代码:https://github.com/seaun163/semanticfusion

23. semantic_3d_mapping

论文:Yang S, Huang Y, Scherer S. Semantic 3Doccupancy mapping through efficient high order CRFs[C]//2017IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2017: 590-597.

代码:https://github.com/shichaoy/semantic_3d_mapping

24. Kimera(实时度量与语义定位建图开源库)

论文:Rosinol A, AbateM, Chang Y, et al. Kimera: anOpen-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXivpreprint arXiv:1910.02490, 2019.

代码:https://github.com/MIT-SPARK/Kimera

25. NeuroSLAM(脑启发式 SLAM)

论文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3Denvironments[J]. Biological Cybernetics, 2019: 1-31.

代码:https://github.com/cognav/NeuroSLAM

第四作者就是 Rat SLAM 的作者,文章也比较了十余种脑启发式的 SLAM

26. gradSLAM(自动分区的稠密 SLAM)

论文:Jatavallabhula K M, Iyer G, Paull L. gradSLAM:Dense SLAM meets Automatic Differentiation[J]. arXivpreprint arXiv:1910.10672, 2019.

代码(预计 20 年 4 月放出):https://github.com/montrealrobotics/gradSLAM

27. ORB-SLAM2 + 目标检测/分割的方案语义建图

https://github.com/floatlazer/semantic_slam

https://github.com/qixuxiang/orb-slam2_with_semantic_labelling

https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic

28. SIVO(语义辅助特征选择)

论文:Ganti P, Waslander S. NetworkUncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16thConference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.

代码:https://github.com/navganti/SIVO

29. FILD(临近图增量式闭环检测)

论文:Shan An, Guangfu Che, Fangru Zhou,Xianglong Liu, Xin Ma, Yu Chen.Fast and Incremental Loop Closure Detection usingProximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS2019)

代码:https://github.com/AnshanTJU/FILD

30. object-detection-sptam(目标检测与双目 SLAM)

论文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo VisualSLAM System[J]. Journal of Intelligent & Robotic Systems, 2019:1-10.

代码:https://github.com/CIFASIS/object-detection-sptam

31. Map Slammer(单目深度估计 + SLAM)

论文:Torres-Camara J M, Escalona F, Gomez-DonosoF, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps withEstimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019:563-574.

代码:https://github.com/jmtc7/mapSlammer

32. NOLBO(变分模型的概率 SLAM)

论文:Yu H, Lee B. Not Only LookBut Observe: Variational Observation Model of Scene-Level 3D Multi-ObjectUnderstanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.

代码:https://github.com/bogus2000/NOLBO

三、Multi-Landmarks / Object SLAM(12 项)

其实多路标的点、线、平面 SLAM 和物体级 SLAM 完全可以分类在 Geometric SLAM 和 Semantic SLAM 中,但个人对这一方向比较感兴趣(也是我的研究生课题),所以将其独立出来,开源方案相对较少,但很有意思。

33. PL-SVO(点线 SVO)

论文:Gomez-Ojeda R, Briales J, Gonzalez-JimenezJ. PL-SVO: Semi-direct Monocular Visual Odometry by combiningpoints and line segments[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:4211-4216.

代码:https://github.com/rubengooj/pl-svo

34. stvo-pl(双目点线 VO)

论文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilisticcombination of points and line segments[C]//2016 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.

代码:https://github.com/rubengooj/stvo-pl

35. PL-SLAM(点线 SLAM)

论文:Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A,et al. PL-SLAM: aStereo SLAM System through the Combination of Points and Line Segments[J]. arXivpreprint arXiv:1705.09479, 2017.

代码:https://github.com/rubengooj/pl-slam

Gomez-Ojeda R,Moreno F A, Zuñiga-Noël D, et al.PL-SLAM: a stereo SLAM system through the combination ofpoints and line segments[J]. IEEE Transactions on Robotics, 2019,35(3): 734-746.

36. PL-VIO

论文:He Y, Zhao J, Guo Y, et al. PL-VIO:Tightly-coupled monocular visual–inertial odometry using point and linefeatures[J]. Sensors, 2018, 18(4): 1159.

代码:https://github.com/HeYijia/PL-VIO

VINS + 线段:https://github.com/Jichao-Peng/VINS-Mono-Optimization

37. lld-slam(用于 SLAM 的可学习型线段描述符)

论文:Vakhitov A, Lempitsky V. Learnable line segment descriptor for visual SLAM[J]. IEEEAccess, 2019, 7: 39923-39934.

代码:https://github.com/alexandervakhitov/lld-slam;Video

点线结合的工作还有很多,国内的比如 + 上交邹丹平老师的 Zou D, Wu Y, Pei L, et al.StructVIO:visual-inertial odometry with structural regularity of man-made environments[J]. IEEETransactions on Robotics, 2019, 35(4): 999-1013. + 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visualSLAM with point and line features[C]//2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2017:1775-1782.

38. PlaneSLAM

论文:Wietrzykowski J. On the representation of planes for efficient graph-basedslam with high-level features[J]. Journal of Automation MobileRobotics and Intelligent Systems, 2016, 10.

代码:https://github.com/LRMPUT/PlaneSLAM

作者另外一项开源代码,没有找到对应的论文:https://github.com/LRMPUT/PUTSLAM

39. Eigen-Factors(特征因子平面对齐)

论文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame andTime-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2019:1278-1284.

代码:https://gitlab.com/gferrer/eigen-factors-iros2019

40. PlaneLoc

论文:Wietrzykowski J, Skrzypczyński P. PlaneLoc:Probabilistic global localization in 3-D using local planar features[J]. Roboticsand Autonomous Systems, 2019, 113: 160-173.

代码:https://github.com/LRMPUT/PlaneLoc

41. Pop-up SLAM

论文:Yang S, Song Y, Kaess M, et al. Pop-up slam:Semantic monocular plane slam for low-texture environments[C]//2016IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2016: 1222-1229.

代码:https://github.com/shichaoy/pop_up_slam

42. Object SLAM

论文:Mu B, Liu S Y, Paull L, et al. Slam withobjects using a nonparametric pose graph[C]//2016 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2016:4602-4609.

代码:https://github.com/BeipengMu/objectSLAM

43. voxblox-plusplus(物体级体素建图)

论文:Grinvald M, Furrer F, Novkovic T, et al. Volumetricinstance-aware semantic mapping and 3D object discovery[J]. IEEERobotics and Automation Letters, 2019, 4(3): 3037-3044.

代码:https://github.com/ethz-asl/voxblox-plusplus

44. Cube SLAM

论文:Yang S, Scherer S. Cubeslam:Monocular 3-d object slam[J]. IEEE Transactions on Robotics, 2019,35(4): 925-938.

代码:https://github.com/shichaoy/cube_slam

也有很多有意思的但没开源的物体级 SLAM

Ok K, Liu K,Frey K, et al. RobustObject-based SLAM for High-speed Autonomous Navigation[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:669-675.

Li J, Meger D,Dudek G. SemanticMapping for View-Invariant Relocalization[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:7108-7115.

Nicholson L,Milford M, Sünderhauf N. Quadricslam:Dual quadrics from object detections as landmarks in object-oriented slam[J]. IEEERobotics and Automation Letters, 2018, 4(1): 1-8.

四、VIO / VISLAM(10 项)

在传感器融合方面只关注了视觉 + 惯导,其他传感器像 LiDAR,GPS 关注较少(SLAM 太复杂啦 -_-!)。视惯融合的新工作也相对较少,基本一些经典的方案就够用了。

45. msckf_vio

论文:Sun K, Mohta K, Pfrommer B, et al. Robust stereovisual inertial odometry for fast autonomous flight[J]. IEEERobotics and Automation Letters, 2018, 3(2): 965-972.

代码:https://github.com/KumarRobotics/msckf_vio

46. rovio

论文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-basedapproach[C]//2015 IEEE/RSJ international conference onintelligent robots and systems (IROS). IEEE, 2015: 298-304.

代码:https://github.com/ethz-asl/rovio

47. R-VIO

论文:Huai Z, Huang G. Robocentricvisual-inertial odometry[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:6319-6326.

代码:https://github.com/rpng/R-VIO

48. okvis

论文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinearoptimization[J]. The International Journal of Robotics Research, 2015,34(3): 314-334.

代码:https://github.com/ethz-asl/okvis

49. VIORB

论文:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

代码:https://github.com/jingpang/LearnVIORB(VIORB 本身是没有开源的,这是王京大佬复现的一个版本)

50. VINS-mono

论文:Qin T, Li P, Shen S. Vins-mono: Arobust and versatile monocular visual-inertial state estimator[J]. IEEETransactions on Robotics, 2018, 34(4): 1004-1020.

代码:https://github.com/HKUST-Aerial-Robotics/VINS-Mono

双目版 VINS-Fusion:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

移动段 VINS-mobile:https://github.com/HKUST-Aerial-Robotics/VINS-Mobile

51. VINS-RGBD

论文:Shan Z, Li R, Schwertfeger S. RGBD-InertialTrajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019,19(10): 2251.

代码:https://github.com/STAR-Center/VINS-RGBD

52. Open-VINS

论文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertialestimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation:Challenges and Applications, Macau, China. IROS 2019.

代码:https://github.com/rpng/open_vins

53. versavis(多功能的视惯传感器系统)

论文:Tschopp F, RinerM, Fehr M, et al. VersaVIS—AnOpen Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020,20(5): 1439.

代码:https://github.com/ethz-asl/versavis

54. CPI(视惯融合的封闭式预积分)

论文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-basedvisual–inertial navigation[J]. The International Journal ofRobotics Research, 2018.

代码:https://github.com/rpng/cpi

五、Dynamic SLAM(5 项)

动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少,欢迎补充issue。

55. DynamicSemanticMapping(动态语义建图)

论文:Kochanov D, Ošep A, Stückler J, et al. Scene flow propagation for semantic mapping and objectdiscovery in dynamic street scenes[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:1785-1792.

代码:https://github.com/ganlumomo/DynamicSemanticMapping

56. DS-SLAM(动态语义 SLAM)

论文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: Asemantic visual SLAM towards dynamic environments[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 1168-1174.

代码:https://github.com/ivipsourcecode/DS-SLAM

57. Co-Fusion(实时分割与跟踪多物体)

论文:Rünz M, Agapito L. Co-fusion:Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2017:4471-4478.

代码:https://github.com/martinruenz/co-fusion

58. DynamicFusion

论文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigidscenes in real-time[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2015: 343-352.

代码:https://github.com/mihaibujanca/dynamicfusion

59. ReFusion(动态场景利用残差三维重建)

论文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3DReconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXivpreprint arXiv:1905.02082, 2019.

代码:https://github.com/PRBonn/refusion

六、Mapping(18 项)

针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建本身就是个很大的话题,开源代码也很多,以下方案收集地可能也不太全。

60. InfiniTAM(跨平台 CPU 实时重建)

论文:Prisacariu V A,Kähler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3dreconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.

代码:https://github.com/victorprad/InfiniTAM

61. BundleFusion

论文:Dai A, Nießner M, Zollhöfer M, et al. Bundlefusion:Real-time globally consistent 3d reconstruction using on-the-fly surfacereintegration[J]. ACM Transactions on Graphics (TOG), 2017,36(4): 76a.

代码:https://github.com/niessner/BundleFusion

62. KinectFusion

论文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10thIEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011:127-136.

代码:https://github.com/chrdiller/KinectFusionApp

63. ElasticFusion

论文:Whelan T, Salas-Moreno R F, Glocker B, etal. ElasticFusion: Real-time dense SLAM and light sourceestimation[J]. The International Journal of Robotics Research, 2016,35(14): 1697-1716.

代码:https://github.com/mp3guy/ElasticFusion

64. Kintinuous

ElasticFusion 同一个团队的工作,帝国理工 Stefan Leutenegger

论文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetricfusion[J]. The International Journal of Robotics Research, 2015,34(4-5): 598-626.

代码:https://github.com/mp3guy/Kintinuous

65. ElasticReconstruction

论文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2015:5556-5565.

代码:https://github.com/qianyizh/ElasticReconstruction

66. FlashFusion

论文:Han L, Fang L. FlashFusion:Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.

代码(一直没放出来):https://github.com/lhanaf/FlashFusion

67. RTAB-Map(激光视觉稠密重建)

论文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneouslocalization and mapping library for large‐scale and long‐term online operation[J]. Journal ofField Robotics, 2019, 36(2): 416-446.

代码:https://github.com/introlab/rtabmap

68. RobustPCLReconstruction(户外稠密重建)

论文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-ScaleOutdoor Scenes[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. 2019: 9690-9698.

代码:https://github.com/ziquan111/RobustPCLReconstruction

69. plane-opt-rgbd(室内平面重建)

论文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texturefor Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition Workshops. 2019: 49-53.

代码:https://github.com/chaowang15/plane-opt-rgbd

70. DenseSurfelMapping(稠密表面重建)

论文:Wang K, Gao F, Shen S. Real-timescalable dense surfel mapping[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 6919-6925.

代码:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

71. surfelmeshing(网格重建)

论文:Schöps T, Sattler T, Pollefeys M. Surfelmeshing:Online surfel-based mesh reconstruction[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2019.

代码:https://github.com/puzzlepaint/surfelmeshing

72. DPPTAM(单目稠密重建)

论文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from amonocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015(ART-2015-92153).

代码:https://github.com/alejocb/dpptam

相关研究:基于超像素的单目 SLAM:UsingSuperpixels in Monocular SLAM ICRA 2014 ;谷歌学术

73. VI-MEAN(单目视惯稠密重建)

论文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots usingvisual-inertial fusion[C]//2017 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2017: 4552-4559.

代码:https://github.com/dvorak0/VI-MEAN

74. REMODE(单目概率稠密重建)

论文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction inreal time[C]//2014 IEEE International Conference on Robotics andAutomation (ICRA). IEEE, 2014: 2609-2616.

原始开源代码:https://github.com/uzh-rpg/rpg_open_remode

与 ORB-SLAM2 结合版本:https://github.com/ayushgaud/ORB_SLAM2https://github.com/ayushgaud/ORB_SLAM2

75. DeepFactors(实时的概率单目稠密 SLAM)

帝国理工学院戴森机器人实验室

论文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors:Real-Time Probabilistic Dense Monocular SLAM[J]. arXivpreprint arXiv:2001.05049, 2020.

代码:https://github.com/jczarnowski/DeepFactors(还未放出)

其他论文:Bloesch M,Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representationfor dense visual SLAM[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2018: 2560-2568.

76. probabilistic_mapping(单目概率稠密重建)

港科沈邵劼老师团队

论文:Ling Y, Wang K, Shen S. Probabilisticdense reconstruction from a moving camera[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 6364-6371.

代码:https://github.com/ygling2008/probabilistic_mapping

另外一篇稠密重建文章的代码一直没放出来Github:Ling Y, Shen S. Real‐timedense mapping for online processing and navigation[J]. Journal ofField Robotics, 2019, 36(5): 1004-1036.

77. ORB-SLAM2 单目半稠密建图

论文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

代码(本身没有开源,贺博复现的一个版本):https://github.com/HeYijia/ORB_SLAM2

加上线段之后的半稠密建图

论文:He S, Qin X, Zhang Z, et al. Incremental3d line segment extraction from semi-dense slam[C]//2018 24thInternational Conference on Pattern Recognition (ICPR). IEEE, 2018:1658-1663.

代码:https://github.com/shidahe/semidense-lines

作者在此基础上用于指导远程抓取操作的一项工作:https://github.com/atlas-jj/ORB-SLAM-free-space-carving

七、Optimization(6 项)

个人感觉优化可能是 SLAM 中最难的一部分了吧 +_+ ,我们一般都是直接用现成的因子图、图优化方案,要创新可不容易,分享山川小哥d的入坑指南https://zhuanlan.zhihu.com/p/53972892。

78. 后端优化库

GTSAM:https://github.com/borglab/gtsam

g2o:https://github.com/RainerKuemmerle/g2o

ceres:http://ceres-solver.org/

79. ICE-BA

论文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundleadjustment for visual-inertial slam[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition. 2018: 1974-1982.

代码:https://github.com/baidu/ICE-BA

80. minisam(因子图最小二乘优化框架)

论文:Dong J, Lv Z. miniSAM: AFlexible Factor Graph Non-linear Least Squares Optimization Framework[J]. arXivpreprint arXiv:1909.00903, 2019.

代码:https://github.com/dongjing3309/minisam

81. SA-SHAGO(几何基元图优化)

论文:Aloise I, Della Corte B, Nardi F, et al. Systematic Handling of Heterogeneous Geometric Primitivesin Graph-SLAM Optimization[J]. IEEE Robotics and AutomationLetters, 2019, 4(3): 2738-2745.

代码:https://srrg.gitlab.io/sashago-website/index.html#

82. MH-iSAM2(SLAM 优化器)

论文:Hsiao M, Kaess M. MH-iSAM2:Multi-hypothesis iSAM using Bayes Tree and Hypo-tree[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:1274-1280.

代码:https://bitbucket.org/rpl_cmu/mh-isam2_lib/src/master/

83. MOLA(用于定位和建图的模块化优化框架)

论文:Blanco-Claraco J L. A ModularOptimization Framework for Localization and Mapping[J]. Proc. ofRobotics: Science and Systems (RSS), FreiburgimBreisgau, Germany, 2019,2.

代码:https://github.com/MOLAorg/mola

责任编辑:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/529681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java 方法的拆分_java – 字符串拆分和比较 – 最快的方法

>将输入读入byte []数组以将指针保持在代码的一侧.>逐字节读取,计算整数元素&#xff1a;int b inputBytes[p];int d b - 0;if (0 < d) {if (d < 9) {element element * 10 d;} else {// b :}} else {// b ,// add element to the hash; element 0;...}if (…

java sql异常_java.sql.SQLException: Io 异常: Got minus one from a

java.sql.SQLException: Io 异常: Got minus one from a read callat oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:111)at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:145)at oracle.jdbc.driver.DatabaseError.thro…

java 拦截器ajax_(转)拦截器深入实践 - JAVA XML JAVASCRIPT AJAX CSS - BlogJava

Interceptor的定义我们来看一下Interceptor的接口的定义&#xff1a;Java代码 publicinterfaceInterceptorextendsSerializable {/*** Called to let an interceptor clean up any resources it has allocated.*/voiddestroy();/*** Called after an interceptor is created, b…

php学的是什么意思_为什么要学习PHP?到底什么是PHP?

为什么要学习PHP?到底什么是PHP?PHP可以做什么?相信这样的问题困扰着很多的人&#xff0c;在我没工作之前&#xff0c;都没有听说过PHP&#xff0c;自从工作后&#xff0c;慢慢接触到代码&#xff0c;慢慢知道什么是PHP。PHP是做网站一种语言&#xff0c;很多工程师都使用PH…

php 多数据库联合查询,php如何同时连接多个数据库_PHP教程

下面是一个函数能够保证连接多个数据库的下不同的表的函数&#xff0c;可以收藏一下&#xff0c;比较实用&#xff0c;测试过是有用的。function mysql_oper($oper,$db,$table,$where1,$limit10){$connmysql_connect(localhost,like,admin,true) or mysql_error();mysql_select…

java判断有没有修改,java字节码判断对象应用是否被修改

原创1 背景在学习并发的时候看到了ConcurrentLinkedQueue队列的源码&#xff0c;刚开始的时候是看网上的帖子&#xff0c;然后就到IDE里边看源码&#xff0c;发现offer()方法在1.7版的时候有过修改。楼主的问题不是整个方法&#xff0c;而是其中的一截代码“(t ! (t tail))”&…

php接口 含义,php晋级必备:一文读懂php接口特点和使用!

PHP接口与类是什么关系&#xff1f;前面提到了php中抽象类和抽象方法&#xff0c;今天给大家谈谈php中接口技术。在PHP中每个类只能继承一个父类&#xff0c;如果声明的新类继承了抽象类实现了以后&#xff0c;这个新类就不能有其它的父类了。但是在实际中需要继承多个类实现功…

php获取不重复的随机数字,php如何生成不重复的随机数字

【摘要】PHP即“超文本预处理器”&#xff0c;是一种通用开源脚本语言。PHP是在服务器端执行的脚本语言&#xff0c;与C语言类似&#xff0c;是常用的网站编程语言。PHP独特的语法混合了C、Java、Perl以及 PHP 自创的语法。下面是php如何生成不重复的随机数字&#xff0c;让我们…

java 素数乘积,求助2424379123 = 两个素数的乘积,求这两个素数?

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼import java.util.ArrayList;import java.util.Date;public class Test {static ArrayList list new ArrayList();/*** 初始化素数表* return*/public static ArrayList initArrayList() {list.add(2);list.add(3);list.add(5);li…

php header什么意思,php header是什么意思

header函数在PHP中是发送一些头部信息的, 我们可以直接使用它来做301跳转等&#xff0c;下面我来总结关于header函数用法与一些常用见问题解决方法。发送一个原始 HTTP 标头[Http Header]到客户端。标头 (header) 是服务器以 HTTP 协义传 HTML 资料到浏览器前所送出的字串&…

matlab dct稀疏系数,Matlab DCT详解

转自&#xff1a;http://blog.csdn.net/ahafg/article/details/48808443DCT变换DCT又称离散余弦变换&#xff0c;是一种块变换方式&#xff0c;只使用余弦函数来表达信号&#xff0c;与傅里叶变换紧密相关。常用于图像数据的压缩&#xff0c;通过将图像分成大小相等(一般为8*8)…

matlab验潮站,验潮站的作用是什么

验潮站的作用是什么?验潮站的建成投入使用&#xff0c;可实时观测沿海潮汐等观测要素&#xff0c;为潮汐预报、赤潮的发生、风暴潮预警报、海啸预警及海平面变化提供基础数据保障以及预测&#xff0c;同时为科学开发海洋提供有力的支持&#xff0c;为海洋经济健康发展保驾护航…

答题闯关php,成语答题闯关红包流量主小程序源码

修复红包页面提现提示文字得叠的问题限制过关红包每天领取个数左侧影响美观的小程序链接的文字去掉了增加版本号没有问题的可以暂不更新此版本修复前一版本客服提现没有授权的问题管理后台增加主动推送客服消息(红包)给用户的功能&#xff0c;唤醒用户使用自定义分享的配置增加…

php是音频吗,只要是用PHP和JS发布的HTML5是否可以播放音频?

我正在尝试创建一个可以上传播客的页面。我想拥有“发布”或“取消发布”的能力。我让每个播客添加到一个数据库中,包含它的信息和发布列,可以是真是假。目前我使用以下代码PHP:if(isPublished()){header(Cache-Control: max-age100000);header(Content-Transfer-Encoding: bin…

php收购,php中文网收购全国用户量最大的phpstudy集成开发环境揭秘

phpstudy介绍2008年第一个版本诞生&#xff0c;至今已有&#xff19;年,该程序包集成最新的ApachePHPMySQLphpMyAdminZendOptimizer,一次性安装,无须配置即可使用,是非常方便、好用的PHP调试环境.该程序不仅包括PHP调试环境,还包括了开发工具、开发手册等.总之学习PHP只需一个包…

复杂电网三相短路计算的matlab仿真,复杂电网三相短路计算的MATLAB仿真电力系统分析课设报告 - 图文...

XG?XT**35.3100??0.11003000.856100???0.05100120发电厂B&#xff1a;XG?XT**17.65100 ??0.051003000.853100???0.025100120发电厂H&#xff1a;XG?XT**17.65100??0.051003000.8512100???0.1100120变电站C&#xff1a;3.6100*XT???0.03100120 线路&#x…

php 将多个数组 相同的键重组,PHP – 合并两个类似于array_combine但具有重复键的数组...

你可以使用array_map&#xff1a;$arrKeys array(str, str, otherStr);$arrVals array(1.22, 1.99, 5.17);function foo($key, $val) {return array($key>$val);}$arrResult array_map(foo, $arrKeys, $arrVals);print_r($arrResult);Array([0] > Array([str] > 1.…

C php反序列化,php反序列化漏洞 - anansec的个人空间 - OSCHINA - 中文开源技术交流社区...

反序列化本身是没有漏洞的&#xff0c;但是当反序列化和一些魔术方法结合使用时就可能会产生安全风险。常用的魔术方法__wakeup反序列化漏洞示例(__wekeup)class A{var $test "demo";function __wakeup(){eval($this->test);}}$b new A();$c serialize($b);$a …

oracle lob值是什么,关于Oracle数据库LOB大字段总结

概述在ORACLE数据库中&#xff0c;DBA_OBJECTS视图中OBJECT_TYPE为LOB的对象是什么东西呢&#xff1f;其实OBJECT_TYPE为LOB就是大对象(LOB)&#xff0c;它指那些用来存储大量数据的数据库字段。Oracle 11gR2 文档&#xff1a;http://download.oracle.com/docs/cd/E11882_01/Ap…

php 统计目录大小,PHP 统计目录大小

例01:function dirsize($dir){$size0;//打开目录$ddopendir($dir); //--opendir("")打开一个目录&#xff0c;返回此目录的资源句柄readdir($dd); //--通过读两次&#xff0c;来跳过特殊目录"."、".."readdir($dd);//遍历目录累加大小while($f …