opencv 的norm_22、OpenCV用卷积Filter2D进行滤波器

迄今为止,看到的函数中,卷积的操作发生在OpenCV函数的内部。理论上,图像卷积就是将内核与图像覆盖区域对应位置相乘之后求和。从调用函数上来看,它需要一个数组参数来描述内核。在实践层面,有一个重要的微妙因素会对结果产生重大影响。微妙之处在于一些内核是可分离的,而另一些则不是。

ecb9f29badbac2207b9af8bb9a24c170.png
图1

图1(A)是可分离的; 它可以表示为两个一维卷积(B和C);D是一个不可分割内核的例子。可分离的内核是可以被认为是两个一维内核的内核,首先与x内核进行卷积然后与y内核进行卷积来应用。这种分解的好处是内核卷积的计算成本大约是图像面积乘以内核区域。这意味着用n×n内核卷积区域A的图像需要时间与An2成正比,同时n×1内核与图像卷积一次,然后与1×n内核卷积占用与An + An = 2An成比例。即使n小于3也有好处,随着n的增长,优势更为突出。

1、 利用filter2D()滤波

鉴于图像卷积所需的操作次数,是图像中像素的数量乘以内核中的像素数,这可能需要很多计算,因此,在这种情况下,最好让OpenCV来帮你完成并利用内部优化。OpenCV完成这些操作的函数是filter2D():

cv::filter2D(

cv::InputArray src,

cv::OutputArray dst,

int ddepth,

cv::InputArray kernel,

cv::Point anchor = cv::Point(-1,-1),

double delta = 0,

int borderType = cv::BORDER_DEFAULT

);

创建一个适当大小的数组,并用滤波器的系数填充它,然后将它与源图像和目标图像一起传递到filter2D()中。可以使用ddepth指定结果图像的深度,使用锚点指定滤波的锚点,使用borderType指定边界类型。如果定义了锚点,则内核可以是偶数大小;否则,它应该是奇数大小。如果要在应用滤波器后将总体偏移应用于结果,则可以使用参数delta。

2、 利用sepFilter2D分离滤波器

在内核可分离的情况下,通过以分离的形式表示并将这些一维内核传递给OpenCV,将从OpenCV获得最佳性能。sepFilter2D()与filter2D()类似,除了它期望这两个一维内核而不是一个二维内核。

cv::sepFilter2D(

cv::InputArray src,

cv::OutputArray dst,

int ddepth,

cv::InputArray rowKernel,

cv::InputArray columnKernel,

cv::Point anchor = cv::Point(-1,-1),

double delta = 0,

int borderType = cv::BORDER_DEFAULT

);

sepFilter2D()的所有参数都与cv :: filter2D()的参数相同,但使用rowKernel和columnKernel参数替换内核参数除外。后者为n1×1和1×n2阵列,n1不一定等于n2。

3、构建内核

getDerivKernel()构造Sobel和Scharr内核,getGaussianKernel()构造高斯内核。

void cv::getDerivKernels(

cv::OutputArray kx,

cv::OutputArray ky,

int dx,

int dy,

int ksize,

bool normalize = true,

int ktype = CV_32F

);

getDerivKernel()的结果放置在kx和ky参数中。内核(Sobel和Scharr)是可分离的内核,将返回两个数组,一个是1×ksize(行系数,kx),另一个是ksize×1(列系数,ky)。这些是从x和y导数阶dx和dy计算而来的。衍生内核总是方形的,因此大小参数ksize是一个整数。ksize可以是1,3,5,7或cv ::SCHARR中的任何一个。normalize参数告诉getDerivKernels()是否应该对内核元素进行归一化。对于在浮点图像上操作的情况,将normalize设置为true,但是当正在操作整数数组时,通常更为明智的做法是,在一些数组之前不对数组进行归一化,这样就不会丢掉以后需要的精度。最后一个参数ktype表示滤波器系数的类型。 ktype的值可以是CV_32F或CV_64F。

高斯滤波器的实际内核数组由getGaussianKernel()生成。

cv::Mat cv::getGaussianKernel(

int ksize, // Kernel size

double sigma, // Gaussian half-width

int ktype = CV_32F // Type for filter coefficients

);

与派生内核一样,高斯内核是可分离的。因此,getGaussianKernel()只计算一个ksize×1的系数数组。ksize的值可以是任何奇数正数。参数sigma设置近似高斯分布的标准偏差。根据以下函数从sigma计算系数:

fb5803713282c62b34ec23ce62fc7b26.png

也就是说,计算系数α使得滤波器整体被归一化。可以将其设置为-1,在这种情况下,将根据ksize大小自动计算σ值。在这种情况下,

93fb0ad12619dac946aefa8e6fa12b00.png

例1是具体的使用方法,从中能看出构造的每个卷积核的用途吗?

例1:filter2D、sepFilter2D、getDerivKernels、getGaussianKernel功能演示。

#include <iostream>
#include <opencv2opencv.hpp>
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{Mat src = imread("E:/ img.bmp", 1);namedWindow("原始噪声图像", 0);imshow("原始噪声图像", src);//构造滤波器Mat kernal = Mat::ones(3, 3, CV_32FC1);kernal/= 9;Mat filterDst;filter2D(src, filterDst, src.depth(), kernal);namedWindow("filter2D结果1", 0);imshow("filter2D结果1", filterDst);Mat kernal2 = (Mat_<char>(3, 3) << 0, -1, 0,-1, 5, -1,0, -1, 0);Mat dst1;filter2D(filterDst, dst1, src.depth(), kernal2);namedWindow("filter2D结果2", 0);imshow("filter2D结果2", dst1);Mat kx = (Mat_<float>(1, 3) << 0, -1, 0);Mat ky = (Mat_<float>(1, 3) << -1, 0, -1);sepFilter2D(filterDst, dst1, src.depth(), kx, ky);// , Point(-1, -1), 0, BORDER_DEFAULT);namedWindow("sepFilter2D结果", 0);imshow("sepFilter2D结果", dst1);getDerivKernels(kx, ky, 1, 1, 3, true);cout << kx << endl;cout << ky << endl;Mat dst2;sepFilter2D(filterDst, dst2, src.depth(), kx, ky);// , Point(-1, -1), 0, BORDER_DEFAULT);cv::normalize(dst2, dst2, 0, 255, NORM_MINMAX, CV_8UC1);namedWindow("sepFilter2D结果2", 0);imshow("sepFilter2D结果2", dst2);Mat gaussKernal;gaussKernal = getGaussianKernel(7, -1);filter2D(src, filterDst, src.depth(), gaussKernal);namedWindow("Filter2D结果3", 0);imshow("Filter2D结果3", filterDst);waitKey(0);return 0;
}

80b175405c1ee28a155e4e17082665f5.png
图2 操作结果示意图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/527447.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

glide加载gif图不显示动画_用Python绘制会动的柱形竞赛图

我们经常看到的Bar Chart Race&#xff08;柱形竞赛图&#xff09;&#xff0c;可以看到数据的呈现非常的直观。今天就一起来学习下如何生成和上面一样的柱形竞赛图。1、导入Python库2、加载数据集这里使用的是城市人口数据集&#xff0c;加载我们想要的数据&#xff1a;其中&a…

不冲突的端口范围_网络中IP地址发生冲突故障怎么办

——————欢迎新老朋友们加入微信群,方便技术讨论&#xff0c;信息互通&#xff0c;行业交流&#xff1a;智能弱电行业专家群&#xff1b;智能弱电行业技术群&#xff1b;智能弱电行业信息群&#xff1b;申请加入请加小编微信&#xff1a;15537112161———————有朋友提…

项目结构_组织结构对项目影响系列课程---项目式组织结构

在前面的几篇文章中我们分别介绍了&#xff0c;系统型&#xff08;简单型&#xff09;&#xff0c;职能型&#xff0c;弱矩阵&#xff0c;平衡矩阵&#xff0c;强矩阵结构的优点和缺点及它们带给项目的影响。今天我们介绍项目式组织结构的优点和缺点及其可能产生的影响。从结构…

第三范式的作用_钟启泉:教学范式的转型,让一线教师面临三大挑战 | 头条

培育“核心素养”的方法论——能动学习真实性的学习境脉所谓“能动学习”是“基于学习者的主体性参与与学习者之间能动的交互作用的学习而产生的”。它不是单纯记忆知识的学习&#xff0c;而是指学习者能够活跃地应对种种课题&#xff0c;并富有实感支撑的学习。基于“核心素养…

云服务器 管理控制台_关于小白如何初步管理自己的云服务器

博主在刚刚接触云服务器的时候&#xff0c;买的云服务是Linux系统的&#xff0c;反正是一脸懵&#xff0c;后来找了很多资料。所以博主认为步骤主要为以下几步第一步&#xff1a;如果买的是Linux系统将其重装成windows系统。以腾讯云服务器为例1.点击右上角的控制台2.进入买的云…

leetcode 贪心_利用贪心算法解LeetCode第1253题:重构2行二进制矩阵

题目描述给你一个 2 行 n 列的二进制数组&#xff1a;矩阵是一个二进制矩阵&#xff0c;这意味着矩阵中的每个元素不是 0 就是 1。第 0 行的元素之和为 upper。第 1 行的元素之和为 lower。第 i 列&#xff08;从 0 开始编号&#xff09;的元素之和为 colsum[i]&#xff0c;col…

pgadmin连接服务器失败_增值税发票税控软件:连接服务器失败是否使用离线文件进行更新?...

增值税发票税控软件&#xff1a;连接服务器失败是否使用离线文件进行更新&#xff1f;第一步&#xff1a;确认本地电脑是否可以正常打开网页&#xff1b;打开电脑&#xff0c;网页查看一下是否可以正常上网&#xff0c;打开百度发现&#xff0c;可以正常上网。第二步&#xff1…

移除镜像_这是否是你心目中的英雄联盟手游?镜像地图。水晶塔,传送移除

自从5月29日之后&#xff0c;RIOT官方放出了英雄联盟手游最新开发者日志后。关于视频内展示的多个游戏关键内容。在玩家群体中引起了大量的争议和讨论。以下是争议和讨论最多的内容1.游戏内英雄的攻击是否为AOE伤害?在大多数的玩家心中&#xff0c;英雄联盟手游是不应该有这种…

电脑重启bootmgr_电脑出现bootmgr is missing怎么办

展开全部电脑开机&#xff0c;或者重启以后显示&#xff1a;Bootmgr is missing, 是代表硬盘的主引导记录(MBR)出错&#xff0c;从而导致无法引e68a8462616964757a686964616f31333337613931导系统&#xff0c;哪只能重建主引导记录&#xff0c;还有一个可能是丢失系统文件&…

qt 在label上以光标位置进行缩放_缩放|位移|渐变简单动画

本文简单介绍Qt的一些动画效果(缩放&#xff0c;位移&#xff0c;渐变)。缩放动画将窗口的geometry(位置&#xff0c;大小)属性作为动画参考实现缩放动画。代码QWidget *w new QWidget;w->setWindowTitle(QStringLiteral("缩放动画Qt君"));w->resize(320, 240)…

虚拟机中ubuntu可以使用显卡吗_在KVM下使用ubuntu19.10安装Anbox

导言&#xff1a;Anbox是一个Android模拟器&#xff0c;可以从linux系统运行Android应用程序或游戏。对于Anbox的安装已经有了各种教程&#xff0c;主要针对ubuntu18.04之前的版本。最近在做一个关于虚拟机中跑安卓的项目&#xff0c;因此在虚拟机中使用ubuntu18.04系统&#x…

mysql tree_MySQL树形遍历(二)

转载自:http://blog.csdn.net/dreamer0924/article/details/7580278英文原文:http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/预排序遍历树算法&#xff1a;modified preorder tree traversal algorithm这个算法有如下几个数据结构1 lft 代表左 left2 r…

mysql 常用数据库连接池_常见的数据库连接池

欢迎进入Java社区论坛&#xff0c;与200万技术人员互动交流 >>进入 2.C3P0 在Hibernate和Spring中默认支持该数据库连接池 需要引入&#xff1a;c3p0-0.9.1.2.jar包&#xff0c;如果报错再引入mchange-commons-0.2.jar 1. 在类路径下编写一个c3p0-config.xml文件 c3p0-co…

win32_bios 的对象编辑器无法保存对象_怎样创建Femap对象

创建Femap对象主要有两种方式&#xff0c;一是直接在Femap内置的API程序窗体中创建&#xff0c;二是在API程序窗口以外的开发环境中创建。一、使用FEMAP集成的API程序窗口开始使用FEMAP API的最快方法是打开API编程窗口。它提供了一个完整的编辑、调试和运行的环境&#xff0c;…

未定义变量: data_三、变量声明

三、变量声明var声明主要特点&#xff1a; - var是函数作用域&#xff0c;只针对函数声明 - 可以多次声明同一个变量不会报错 - 捕获变量怪异之处function fnVar(flag: boolean) {if(flag) {var x 10;}return x; } fnVar(true); // 10 fnVar(false); // undefinedvar isDone: …

表单的默认提交方式_对于PHP表单提交有哪集中方式讲解

PHP 做网页后端还是很优秀的&#xff0c;PHP 表单提交&#xff0c;不外乎两种方法&#xff0c;即 GET 和 POST 方法&#xff1b;PHP后台使用全局变量$_POST;$_GET;来获取提交数据。代码&#xff1a;<!DOCTYPE HTML> <html> <head><meta charset"utf-…

spring中怎么让事物提交_Spring怎么在一个事务中开启另一个事务

点击上方“Java知音”&#xff0c;选择“置顶公众号”技术文章第一时间送达&#xff01;作者&#xff1a;Mazinmy.oschina.net/u/3441184/blog/893628Spring项目&#xff0c;需要在一个事务中开启另一个事务。上面提到的情景可能不常见&#xff0c;但是还是会有的&#xff0c;一…

通过对象指针的方式强行指定到子类_C++中的虚指针与虚函数表

​ 最近在逛B站的时候发现有候捷老师的课程&#xff0c;如获至宝。因此&#xff0c;跟随他的讲解又复习了一遍关于C的内容&#xff0c;收获也非常的大&#xff0c;对于某些模糊的概念及遗忘的内容又有了更深的认识。以下内容是关于虚函数表、虚函数指针&#xff0c;而C中的动态…

如何手动输入给数组赋值_你是否真的了解VBA数组呢?让我带你认识一下真正的数组...

大家好&#xff0c;我们今日继续讲解VBA代码解决方案的第110讲内容&#xff1a;VBA数组讲解&#xff0c;什么是数组&#xff0c;如何定义数组&#xff0c;如何创建数组一、什么是数组 就是数组共享一个名字&#xff0c;有着多个元素按顺序排列的变量。在数组中&#xff0c;元素…

路由器装上去没有网络_5G网络那么快,今后路由器没有存在的价值了?

从一些宣传来看&#xff0c;即将商用的5G网速确实很快&#xff0c;号称10Gbps&#xff0c;比有线宽带还要快。既然5G网速那么快了&#xff0c;还有必要装宽带和路由器吗?先来纠正一个误区&#xff0c;5G网络的理论速度与实际速度是有很大差别的!!目前很多宣传中所说的5G网速最…