目标检测笔记(十一):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)

文章目录

  • 背景
  • 代码
  • 结果

背景

由于我们在做项目的时候可能会涉及到某个指定区域进行目标检测或者人脸识别等任务,所以这篇博客是为了探究如何在传统目标检测的基础上来结合特定区域进行检测,以OpenCV自带的包为例。

一般来说有两种方式实现区域指定:

  • 第一种:在网络处理之前,将特定区域划分出来,然后在送入到神经网络进行检测
  • 第二种:在网络处理之后,直接来划分区域的坐标对网络处理后目标进行判定,判定此目标是否在这个区域中,如果在则show,否则则略过

很明显通过第一种方式,网络可以减少很大的计算复杂度,因为不用将整张图片送入到网络中进行处理。

代码

这个代码是直接通过对特定区域结合OpenCV自带人脸检测器来进行人脸检测。若区域内,目标则被检测,超过区域则不被记录。

import cv2face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(0)
# 定义感兴趣区域的坐标和大小
roi_x = 200
roi_y = 100
roi_width = 300
roi_height = 300while True:# 读取一帧图像ret, frame = cap.read()if not ret:print("无法读取摄像头图像")break# 获取感兴趣区域roi = frame[roi_y:roi_y+roi_height, roi_x:roi_x+roi_width]# 将感兴趣区域转换为灰度图像gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)# 使用人脸检测器检测人脸区域faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))# 在原始图像上绘制感兴趣区域矩形cv2.rectangle(frame, (roi_x, roi_y), (roi_x+roi_width, roi_y+roi_height), (255, 0, 0), 2)# 在感兴趣区域上绘制人脸区域矩形for (x, y, w, h) in faces:cv2.rectangle(roi, (x, y), (x+w, y+h), (0, 255, 0), 2)# 在窗口中显示图像cv2.imshow("Camera", frame)if cv2.waitKey(1) == 27:breakcap.release()
cv2.destroyAllWindows()

这个代码在上面代码的基础上,加入了鼠标点击事件,用户可以通过自己来划分特定检测区域,划分之后将从整张图片的检测转换为特定区域的检测。

import cv2def draw_roi(event, x, y, flags, param):global roi_x, roi_y, roi_width, roi_height, drawingif event == cv2.EVENT_LBUTTONDOWN:# 鼠标按下,开始绘制roi_x, roi_y = x, yelif event == cv2.EVENT_LBUTTONUP:# 鼠标释放,结束绘制roi_width, roi_height = x - roi_x, y - roi_ydrawing = Trueif __name__ == '__main__':# 创建一个全局变量来存储感兴趣区域的坐标和大小roi_x, roi_y, roi_width, roi_height = 0, 0, 0, 0drawing = Falseover = 0cap = cv2.VideoCapture(0)# 创建窗口并绑定鼠标事件cv2.namedWindow("Camera")cv2.setMouseCallback("Camera", draw_roi)# 加载人脸检测器face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')while True:ret, frame = cap.read()if not ret:print("无法读取摄像头图像")break# 如果触发了鼠标事件,则在感兴趣区域上运行人脸检测器roi = frame[roi_y:roi_y + roi_height, roi_x:roi_x + roi_width]# 在原始图像上绘制感兴趣区域矩形cv2.rectangle(frame, (roi_x, roi_y), (roi_x + roi_width, roi_y + roi_height), (255, 0, 0), 2)if drawing:gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in faces:cv2.rectangle(roi, (x, y), (x + w, y + h), (0, 255, 0), 2)else:gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in faces:cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.imshow("Camera", frame)if cv2.waitKey(1) == 27:breakcap.release()cv2.destroyAllWindows()

结果

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【动手学深度学习】--20.目标检测和边界框

文章目录 目标检测和边界框1.目标检测2.边界框 目标检测和边界框 学习视频:物体检测和数据集【动手学深度学习v2】 官方笔记:目标检测和边界框 在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别…

docker在阿里云上的镜像仓库管理

目录 一.登录进入阿里云网站,点击个人实例进行创建 二.创建仓库,填写相关信息 三.在访问凭证中设置固定密码用于登录,登录时用户名是使用你注册阿里云的账号名称,密码使用设置的固定密码 四.为镜像打标签并推送到仓库 五.拉取…

互联网医院成品功能你有哪些看法?

随着信息化的飞速发展,医疗领域信息化程度日益加深,医院对于信息化的自身需求越来越高,由此也推动了医院信息化的快速发展。而即时医疗信息服务能够解决普通老百姓医疗信息匮乏、花大钱看小病、就医不及时等基本问题。通过智能手机、平板电脑…

jdk 04 stream的collect方法

01.收集(collect) collect,收集,可以说是内容最繁多、功能最丰富的部分了。 从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。 collect主要依赖java.util.stream.Collectors类内置的静态方…

七大出海赛道解读,亚马逊云科技为行业客户量身打造解决方案

伴随全球化带来的新机遇和国内市场的进一步趋于饱和,近几年,中国企业出海快速升温,成为了新的创业风口和企业的第二增长曲线。从范围上看,出海市场由近及远,逐步扩张。从传统的东南亚市场,到成熟的北美、欧…

丰田中国vs中国丰田:一次历史性的战略探讨

比亚迪、长城、奇瑞等中国汽车品牌表现优异,让原本处于领先地位的日系、美系、德系等合资品牌面临压力,市场份额遭受前所未有的全新挑战。 东风雷诺、广汽菲克、广汽讴歌等逐渐退出中国市场,丰田也面临销售下滑。在中国汽车市场全新竞争格局下…

Qt跨平台无边框窗口探索记录

一、前言 实现的效果为:通过黑色矩形框预操作,鼠标释放时更新窗口。效果图如下: 1.功能 1.1 已实现功能 8个方向的缩放标题栏拖动标题栏双击最大化/正常窗口窗口最小尺寸预操作框颜色与背景色互补多屏幕默认标题栏 1.2 待开发功能 拖动到…

SQL-Injection

文章目录 引入columns表tables表schemata表以sqli-labs靶场为例路径获取常见方法文件读取函数文件写入函数防注入 数字型注入(post)字符型注入(get)搜索型注入xx型注入 引入 在MYSQL5.0以上版本中,mysql存在一个自带数据库名为information_schema,它是一个存储记录…

YOLOV1

YOU ONLY LOOK ONCE

学习ts(六)数据类型(元组、枚举、Symbol、never)与类型推论

1.元组 元组(Tuple)是固定数量的不同类型的元素的组合。是数组的变种。 元组与集合的不同之处在于,元组中的元素类型可以是不同的,而且数量固定。元组的好处在于可以把多个元素作为一个单元传递。如果一个方法需要返回多个值&…

生成式人工智能的潜在有害影响与未来之路(三)

产品责任法的潜在适用 背景和风险 产品责任是整个二十世纪发展起来的一个法律领域,旨在应对大规模生产的产品可能对社会造成的伤害。这一法律领域侧重于三个主要危害:设计缺陷的产品、制造缺陷的产品和营销缺陷的产品。产品责任法的特点有两个要素&…

R包开发1:RStudio 与 GitHub建立连接

目录 1.安装Git 2-配置Git(只需配置一次) 3-用SSH连接GitHub(只需配置一次) 4-创建Github远程仓库 5-克隆仓库到本地 目标:创建的R包,包含Git版本控制,并且能在远程Github仓库同步,相当于发布在Github。…

C语言练习2(巩固提升)

C语言练习2 选择题 前言 “志之所趋,无远弗届,穷山距海,不能限也。”对想做爱做的事要敢试敢为,努力从无到有、从小到大,把理想变为现实。要敢于做先锋,而不做过客、当看客,让创新成为青春远航的…

图为科技-边缘计算在智慧医疗领域的作用

边缘计算在智慧医疗领域的作用 随着科技的进步,智慧医疗已成为医疗行业的重要发展趋势。边缘计算作为新兴技术,在智慧医疗领域发挥着越来越重要的作用。本文将介绍边缘计算在智慧医疗领域的应用及其优势,并探讨未来发展方向。 一、边缘计算…

matlab使用教程(19)—曲线拟合与一元方程求根

1.多项式曲线拟合 此示例说明如何使用 polyfit 函数将多项式曲线与一组数据点拟合。您可以按照以下语法,使用 polyfit 求出以最小二乘方式与一组数据拟合的多项式的系数 p polyfit(x,y,n), 其中: • x 和 y 是包含数据点的 x 和 y 坐标的向量 …

uniapp 安卓平台签名证书(.keystore)生成

安装JRE环境 下载jre安装包:https://www.oracle.com/java/technologies/downloads/#java8安装jre安装包时,记录安装目录(例:C:\Program Files\Java\jdk-20)打开命令行(cmd),将JRE安装路径添加到系统环境变量 d: se…

PostgreSQL基本操作总结

安装按PostgreSQL数据库后,会默认创建用户postgres和数据库postgres,这个用户是超级用户,权限最高,可以创建其他用户和权限,在实际开发过程中,会新创建用户和业务数据库,本文主要介绍用户权限和…

Redis Pub/Sub 指南

Redis 不仅仅是一个数据库,还可以作为支持发布和订阅(Pub/Sub)操作的消息代理。本文将使用 Navicat for Redis 简要概述 Redis 的 Pub/Sub 功能。 关于发布或订阅消息范式 Pub/Sub 是一种模式,发送者(广播者&#xf…

分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测 目录 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.SCNGO-CNN-LSTM-Attention数据分类预测程序,改进算法,融合正余弦和…

最新ChatGPT网站程序源码+AI系统+详细图文搭建教程/支持GPT4.0/AI绘画/H5端/Prompt知识库

一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧&#xff01…