【硕士论文完美复现】【价格型需求响应】基于需求侧响应的配电网供电能力综合评估(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 电价伸缩系数分析

1.2 需求侧响应数学模型 

1.3 粒子群算法求解 

1.4 本文流程图 

📚2 运行结果

2.1 风电和光伏的出力情况

2.2 峰谷时段分类 

2.3 分时电价制定及负荷响应结果 

2.3.1 仅考虑需求响应

2.3.2 考虑分布式和需求响应 

🎉3 参考文献

🌈4 Python代码、数据、文章讲解


💥1 概述

在配电网中,需求侧响应是一种通过激励用户在供电能力不足时减少用电量的策略。为了对配电网的供电能力进行综合评估,需要考虑以下几个方面:

1. 预测需求:根据历史数据和相关因素(如天气、季节等),预测未来的电力需求量。

2. 需求响应机制:制定需求响应机制,包括激励机制和合同设计,以鼓励用户减少用电量。

3. 用户参与度:评估用户参与需求响应的程度,包括参与率和减少用电量的程度。

4. 可靠性分析:分析需求响应对供电能力和系统可靠性的影响,评估在需求响应情况下是否能满足用户的电力需求。

5. 成本效益分析:评估需求响应机制的效益,包括节约的电力成本、减少的供电设备需求和改善的系统可靠性等方面。

通过对需求侧响应的配电网供电能力进行综合评估,可以为电力公司制定更有效的需求响应策略和合同设计提供依据,以实现可持续的供电和优化的系统运行。

1.1 电价伸缩系数分析

在经济学领域,通常采用价格伸缩系数来描述商品的需求对于价格敏感程度[50] 。电力能源作为商品,同样可以采用伸缩系数来描述电力需求和电价之间的关系。一方面,电价的变化可以影响电力客户的用电行为,进而影响用电量;另一方面,客户用电量的改变,也可以指导供电侧电价的制定,使电力企业获得更高的收益。客户用电量与电价之间的关系采用电价伸缩系数 k 来表示。k 可以定义为客户用电量波动率与价格波动率的比值,如式(2-17):

式中,p m 分别表示该时刻初始的用电量和价格,∆p和∆m 分别表示该时刻的用电量和电价的改变量。实际生产生活中,电力客户的用电行受多重因素影响。一方面,当前时段电力价格的变化可能会导致当前时段用电行为的改变,产生了用电量的增减;同时,其他时段的电价变化也会对当前时段客户的用电行为产生影响,即产生了用电量的转移。所以,在分析价格伸缩性时,需要综合考虑上述两种伸缩变化[51] 。可定义第 i 时段的自伸缩系数为kii,第 i 时段对第 j 时段的互伸缩系数为kij,如式(2-18)~式(2-19)。在得到自伸缩系数kii和互伸缩系数kij后,则能形成需求侧响应电价伸缩系数矩阵 K,如式(2-20):

 

显然地,K 矩阵对角线元素k ff k pp kgg 表征了当前时间电价变化与需求侧用电量之间的相互作用,是自伸缩系数;而矩阵中其他元素则表征了不同时间内电价变化与需求侧用电量的相互作用,是互伸缩系数。进一步地,在采用了分时电价之后,各个时间段用电变化量ΔP ,如式(221):

 

1.2 需求侧响应数学模型 

对于配电网而言,如果在其允许的范围内峰值负荷过大,会导致其转带备用容量不足,负荷波动率较高,容易影响该配电网的稳定性[52] 。同时,文献[53]通过柯西-施瓦茨不等式证明了网损与最高-最低负荷比率成正比,即日内负荷的峰谷差越小,系统线损率越低。可见,缩小电网的高低负荷比率能够有效降低网损,提高系统负荷率,从而提升设备利用率。

基于上述分析,设置日最高负荷与日最高-最低负荷比率为规划目标。因为这两个目标可以从直观上判断出系统的供电能力,故也可以定义这两个规模目标为系统的显性供电能力,其值越小,系统的显性供电能力越好。规划目标如式(2-23)~式(2-24):

(1) 主观限制 

某些时段过高的价格会导致客户支出过高,所以需要考虑客户负担的合理性,即在应用需求侧响应策略后客户所需负担的总费用不应升高。据此,定义客户支出合理性指标 H1,如式(2-26):

同时,在市场经济中,欲达到供需双方利益的最大化,不仅需要考虑商品的成本和用户的支出,同时也需要考虑商品是否满足需求方的舒适性。分析需求侧响应策略的削峰填谷作用可知,微观上,在采用需求侧响应策略之后,一部分客户会根据分时电价调整自身的用电安排,这会导致自身的舒适性降低,而使个人日用电需求曲线变的平缓;宏观上,电力日负荷曲线是全体电力客户当日用电情况的集中反映,当部分用户因参与需求侧响应而使得用电曲线变的平缓时,电网的日负荷曲线会随之变的平缓,日负荷标准差也会相应减小。

通过上述分析可知,负荷曲线的标准差可以从一定程度上体现客户对于需求侧响应的参与度。随着参与度的提升,负荷曲线的标准差也会在一定程度上减小,但是客户被迫调整或者削减原有的用电安排的情况就会越多,导致舒适性降低。基于上述分析,定义客户舒适性指标 H2如式(2-27):

 

(2) 客观限制 

根据经济学相关知识可知,通常情况下商品的价格量是一个合理范围内的正数;同时,对于客户而言,为保证正常的生产生活用电需求,电力负荷高峰时的电费不可以过高;而对于供电企业而言,为保证盈利,则在电力负荷低谷时电费不能过低;此外,根据电力市场相关经验易知,商品定价时需要保证一定的价格梯度,即低谷时刻价格须比平时价格低,且平时价格也须比高峰时段价格低。客观价格边界条件如式(2-31):

1.3 粒子群算法求解 

粒子群优化算法(Particle Swarm Optimization,PSO)属于进化算法的一种[54] 。这种算法与模拟退火算法相似,它是从随机解出发,通过迭代寻找最优解,同时通过适应度来描述所得解的优劣。PSO 法与遗传算法相比,不需要经过“交叉”和“变异”过程,而是跟踪当前搜索到的最优值来进行全局寻优。

PSO 算法中,每个规划目标的隐含解都是搜寻空间内的一枚粒子。所有粒子都存在由优化函数决定的适值,同时每个粒子还有一个速度决定它们“飞行”的方向和距离,全部粒子通过实时跟踪最优粒子在解空间中不断进行迭代。粒子的更新方式如图2-3 所示:

1.4 本文流程图 

📚2 运行结果

2.1 风电和光伏的出力情况

2.2 峰谷时段分类 

2.3 分时电价制定及负荷响应结果 

本文也是粒子群算法进行求解,对于需求侧响应后负荷的变化,可根据电价伸缩系数和式(2-21)~式(2-22)计算得出。伸缩系数在工程使用时需要结合历史运行数据和当地情况并由式(2-17)~式(2-19) 计算得出。本文选择伸缩系数矩阵如式(2-37) 

原文结果:

复现结果: 

2.3.1 仅考虑需求响应

复现结果:

 

 

2.3.2 考虑分布式和需求响应 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]魏鹏飞. 基于需求侧响应的配电网供电能力综合评估[D].内蒙古工业大学,2019.

🌈4 Python代码、数据、文章讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作

文献计量学是指用数学和统计学的方法,定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体,注重量化的综合性知识体系。特别是,信息可视化技术手段和方法的运用,可直观的展示主题的研究发展历程、研究现状、研究…

七大排序算法详解

1.概念 1.排序的稳定性 常见的稳定的排序有三种:直接插入排序,冒泡排序,归并排序 对于一组数据元素排列,使用某种排序算法对它进行排序,若相同数据之间的前后位置排序后和未排序之前是相同的,我们就成这种…

机器学习之ResNet(残差网络)与常用的标准数据集

ResNet(Residual Network)是一种深度神经网络,由微软实验室的何凯明等几位大神在2015年提出,并在当年的ImageNet竞赛中获得了分类任务第一名。 ResNet通过引入残差结构(residual structure),解决…

vue3 vite使用 monaco-editor 报错

报错:Unexpected usage at EditorSimpleWorker.loadForeignModule 修改配置: "monaco-editor-webpack-plugin": "^4.2.0",删除不用 版本: "monaco-editor": "^0.28.1", 修改如下: opti…

《基于 Vue 组件库 的 Webpack5 配置》2.模块规则 module.rule

配置 module.rules ,创建模块时,匹配请求的规则数组; 可参考 webpack5 指南-管理资源; vue 可参考上述配置; js 使用 webpack babel-loader; css 参考 webpack 加载 CSS。注意style-loader 和 vue-style…

stm32 无刷电机 V/F控制(无刷电机变频控制)以及与foc(矢量控制)的区别

无刷电机有三种控制方式,方波控制,foc控制以及变频控制,前两章我们讲解了方波和foc的控制方法,今天我们一起来讲一讲什么是无刷电机的变频控制(VF)以及变频控制的优势是什么。 实验用的硬件还是KY_Motor的无…

IDEA远程开发

IDEA远程开发 前期准备 IDEA的远程开发是在本地去操昨远程服务器上的代码,所以我们先需要准备一台服务器,在此我使用vmware虚拟出ubuntu-20.04.6的Server版本,以便后面演示。 Ubuntu的Java环境配置 JDK8 sudo apt install openjdk-8-jdkmaven sudo apt instal…

三星申请新商标:未来将应用于智能戒指,作为XR头显延伸设备

三星最近向英国知识产权局提交了名为“Samsung Curio”的新商标,这预示着三星正积极扩展可穿戴设备生态。该商标被分类为“Class 9”,这表明它有可能被用于未来的智能戒指。 据报道,三星计划将智能戒指作为XR头显设备的延伸,与苹果…

面试题-React(六):React组件和生命周期

一、React组件 React组件简介: React组件是构建用户界面的基本单元。它们将界面拆分成独立、可重用的部分,使得代码更加模块化、可维护性更高。React组件可以是函数组件或类组件,它们接收输入的数据(称为props)并返回…

深度学习调参技巧

写完代码—> 小数据上降loss无nan—> 大数据没爆卡速度可以—> 实验log完好可视化loss稳步下降—>回头看实验结果 写完代码后,不要只是在小数据上降loss无nan,还要检查一下模型的输出是否符合预期,比如是否有明显的偏差或者异常值…

基于PaddlePaddle实现的声纹识别系统

前言 本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss…

NOIP真题答案 过河 数的划分

过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点&#xf…

ETLCloud轻量级数据中台解决方案

引言 随着信息时代的到来,数据已经成为企业的重要资源,如何高效地管理、分析和应用数据变得尤为关键。然而,许多企业在构建数据中台时面临着高昂的成本、复杂的架构和漫长的实施周期等问题。为了解决这些挑战,我们推出了ETLCloud…

java八股文面试[java基础]——CGLIB动态代理与JDK动态代理

CGLIB CGLIB简介: 什么是CGLIB CGLIB是一个强大的、高性能的代码生成库。其被广泛应用于AOP框架(Spring、dynaop)中,用以提供方法拦截操作。Hibernate作为一个比较受欢迎的ORM框架,同样使用CGLIB来代理单端&#xff…

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力

🦉 AI新闻 🚀 钉钉宣布开放智能化底座能力AI PaaS,推动企业数智化转型发展 摘要:钉钉在生态大会上宣布开放智能化底座能力AI PaaS,与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…

uniapp 微信小程序 路由跳转

保留当前页面,跳转到应用内的某个页面,使用uni.navigateBack可以返回到原页面 //在起始页面跳转到test.vue页面并传递参数 uni.navigateTo({url: test?id1&name"lisa" }); uni.redirectTo(OBJECT) 关闭当前页面,跳转到应用…

【LeetCode】134. 加油站 - 贪心算法

目录标题 134. 加油站 贪心思想: 因为本题用到了贪心算法所以先来了解一下「贪心算法」的问题需要满足的条件: 最优子结构:规模较大的问题的解由规模较小的子问题的解组成,规模较大的问题的解只由其中一个规模较小的子问题的解决定…

文心一言 VS 讯飞星火 VS chatgpt (81)-- 算法导论7.4 6题

六、如果用go语言&#xff0c;考虑对 PARTITION 过程做这样的修改:从数组 A 中随机选出三个元素&#xff0c;并用这三个元素的中位数(即这三个元素按大小排在中间的值)对数组进行划分。求以a 的函数形式表示的、最坏划分比例为 a:(1-a)的近似概率&#xff0c;其中 0<a<1。…

卡尔曼滤波学习笔记

Kalman Filter Ⅰ、直观理解1、描述2、例子 Ⅱ、适用范围1、线性系统2、噪声服从高斯分布 Ⅲ、相关公式1、原始公式2、预测公式3、更新公式4、初值赋予5、总结 Ⅳ、应用例子Ⅴ、代码实现Ⅵ、公式理解1、协方差矩阵的理解1.1 协方差1.2 协方差矩阵1.3、相关数学公式 2、状态方程…

Backpack Language Models

本文是LLM系列的文章&#xff0c;针对《Backpack Language Models》的翻译。 背包语言模型 摘要1 引言2 背包架构3 带有背包的语言模型4 实验训练背包LM5 感知向量中的涌现结构6 用于控制的感知向量7 相关工作8 讨论9 结论11 不足12 摘要 我们介绍了Backpacks&#xff1a;一种…