(pytorch-深度学习系列)读取和存储数据-学习笔记

读取和存储数据

我们可以使用pt文件存储Tensor数据:

import torch
from torch import nnx = torch.ones(3)
torch.save(x, 'x.pt')

这样我们就将数据存储在名为x.pt的文件中了
我们可以从文件中将该数据读入内存:

x2 = torch.load('x.pt')
print(x2)

还可以存储Tensor列表到文件中,并读取:

y = torch.zeros(4)
torch.save([x, y], "xy.pt")
xy_list = torch.load("xy.pt")
print(xy_list)

不仅如此,还可以存储一个键值为Tensor变量的字典:

torch.save({'x':x, 'y':y}, "xy_dict")
xy_dict = torch.load("xy_dict")
print(xy_dict)

对模型参数进行读写:

对于Module类的对象,我们可以使用model.parameters()函数来访问模型的参数。而state_dict函数将会返回一个模型的参数名称到参数Tensor对象的一个字典对象。

class my_module(mm.Module):def __init__(self):super(my_module, self)self.hidden = nn.Linear(3, 2)self.action = nn.ReLU()self.output = nn.Linear(2, 1)def forward(self, x):middle = self.action(self.hidden(x))return self.output(middle)	net = my_module()
net.state_dict()

输出:

OrderedDict([('hidden.weight', tensor([[ 0.2448,  0.1856, -0.5678],[ 0.2030, -0.2073, -0.0104]])),('hidden.bias', tensor([-0.3117, -0.4232])),('output.weight', tensor([[-0.4556,  0.4084]])),('output.bias', tensor([-0.3573]))])

但是,只有具有可变参数(可学习参数)的网络层才会在state_dict中,

同样的,优化器(optim)也有一个state_dict,这个函数返回一个字典,该字典包含优化器的状态以及其超参数信息:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer.state_dict()

输出:

{'param_groups': [{'dampening': 0,'lr': 0.001,'momentum': 0.9,'nesterov': False,'params': [4736167728, 4736166648, 4736167368, 4736165352],'weight_decay': 0}],'state': {}}

那么就可以通过保存模型的state_dict来保存模型

torch.save(net.state_dict(), PATH)model = my_module(*args, **kwargs)
model.load_state_dict(torch.load(PATH))

还可以直接保存整个模型:

torch.save(model, PATH)
model = torch.load(PATH)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507988.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习系列)pytorch使用GPU计算-学习笔记

pytorch使用GPU计算 在之前的blog中早已经讲过如何配置pytorch的GPU加速环境 查看GPU加速是否可用: import torch from torch import nnprint(torch.cuda.is_available()) # true 查看GPU是否可用print(torch.cuda.device_count()) #GPU数量, 1torch.…

(pytorch-深度学习系列)CNN二维卷积层-学习笔记

二维卷积层 在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应…

(pytorch-深度学习系列)卷积神经网络中的填充(padding)和步幅(stride)

卷积神经网络中的填充(padding)和步幅(stride) 之前写过一篇blog,描述CNN网络层的输入和输入尺寸的计算关系,但是并没有描述的很全面,这里全面描述了影响输出尺寸的两个超参数padding和stride,查阅了相关资料,编码理解…

(pytorch-深度学习系列)CNN的多输入通道和多输出通道

CNN的多输入通道和多输出通道 之前的输入都视为二维数组,但是真实数据往往具有更高的维度,彩色图像有RGB三个颜色通道,那么这个图像(高为h,宽为w)可以表示为3∗h∗w3*h*w3∗h∗w的多维数组,一般…

(pytorch-深度学习系列)CNN中的池化层-学习笔记

CNN中的池化层 首先,池化(pooling)层的提出是为了缓解卷积层对位置的过度敏感性。 什么意思? 比如在图像边缘检测问题中,实际图像里,我们的目标物体不会总出现在固定位置,即使我们连续拍摄同…

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet 先上图:LeNet的网络结构 卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核…

(pytorch-深度学习系列)深度卷积神经网络AlexNet

深度卷积神经网络AlexNet 文字过多,但是重点已经标出来了 背景 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并…

(pytorch-深度学习系列)使用重复元素的网络(VGG)

使用重复元素的网络(VGG) VGG的名字来源于论文作者所在的实验室Visual Geometry Group,VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。 VGG Block(VGG 块) VGG块的组成规律是:连续使用数个相同的填充为1、窗口形…

(pytorch-深度学习系列)网络中的网络(NiN)

网络中的网络(NiN) LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽&…

(pytorch-深度学习)包含并行连结的网络(GoogLeNet)

包含并行连结的网络(GoogLeNet) 在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想&#…

(pytorch-深度学习)批量归一化

批量归一化 批量归一化(batch normalization)层能让较深的神经网络的训练变得更加容易 通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变…

(pytorch-深度学习)实现残差网络(ResNet)

实现残差网络(ResNet) 我们一般认为,增加神经网络模型的层数,充分训练后的模型理论上能更有效地降低训练误差。理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射f(x)xf(x) xf(…

(pytorch-深度学习)实现稠密连接网络(DenseNet)

稠密连接网络(DenseNet) ResNet中的跨层连接设计引申出了数个后续工作。稠密连接网络(DenseNet)与ResNet的主要区别在于在跨层连接上的主要区别: ResNet使用相加DenseNet使用连结 ResNet(左)…

(pytorch-深度学习)语言模型-学习笔记

语言模型 自然语言处理中最常见的数据是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。 假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1​,w2​,…,wT​,那么在离散的时间序列中: wtw_twt​(1≤t…

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中,时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响,需要增大nnn。 这样模型参数的数量将随之呈指数级增长…

配置jupyter-pytorch深度学习环境

配置jupyter-pytorch深度学习环境 安装anaconda3新建环境,命名为pytorch在虚拟环境里安装jupyter activate pytorch pip install jupyter安装可视化插件,ipywidgets,并且关联 pip install ipywidgets jupyter nbextension enable --py wid…

(pytorch-深度学习)SE-ResNet的pytorch实现

SE-ResNet的pytorch实现 残差块: class Resiual_block(nn.Module):def __init__(self, in, middle_out, out, kernel_size3, padding1):self.out_channel middle_outsuper(Resiual_block, self).__init__()self.shortcut nn.Sequential(nn.Conv2d(nin, nout, ke…

(pytorch-深度学习)循环神经网络的从零开始实现

循环神经网络的从零开始实现 首先,我们读取周杰伦专辑歌词数据集: import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append("..") device tor…

(pytorch-深度学习)使用pytorch框架nn.RNN实现循环神经网络

使用pytorch框架nn.RNN实现循环神经网络 首先,读取周杰伦专辑歌词数据集。 import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as Fimport sys sys.path.append("..") device torch.d…

(pytorch-深度学习)通过时间反向传播

通过时间反向传播 介绍循环神经网络中梯度的计算和存储方法,即通过时间反向传播(back-propagation through time)。 正向传播和反向传播相互依赖。正向传播在循环神经网络中比较直观,而通过时间反向传播其实是反向传播在循环神经…