深度学习-计算机视觉--图像增广

图像增广

大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模

图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增广技术功不可没。

导入实验所需的包或模块。

%matplotlib inline
import time
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from PIL import Image
from matplotlib import pyplot as plt
from IPython import displaydevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

我们来读取一张形状为510×320510\times 320510×320(高和宽分别为500像素和320像素)的图像作为实验的样例。

def use_svg_display():"""Use svg format to display plot in jupyter"""display.set_matplotlib_formats('svg')def set_figsize(figsize=(3.5, 2.5)):use_svg_display()# 设置图的尺寸plt.rcParams['figure.figsize'] = figsizeset_figsize()
img = Image.open('small_cat.jpg')
plt.imshow(img)

定义绘图函数show_images。

def show_images(imgs, num_rows, num_cols, scale=2):figsize = (num_cols * scale, num_rows * scale)_, axes = plt.subplots(num_rows, num_cols, figsize=figsize)for i in range(num_rows):for j in range(num_cols):axes[i][j].imshow(imgs[i * num_cols + j])axes[i][j].axes.get_xaxis().set_visible(False)axes[i][j].axes.get_yaxis().set_visible(False)return axes

大部分图像增广方法都有一定的随机性。为了方便观察图像增广的效果,接下来我们定义一个辅助函数apply。这个函数对输入图像img多次运行图像增广方法aug并展示所有的结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):Y = [aug(img) for _ in range(num_rows * num_cols)]show_images(Y, num_rows, num_cols, scale)

翻转和裁剪

左右翻转图像通常不改变物体的类别。它是最早也是最广泛使用的一种图像增广方法。下面我们通过torchvision.transforms模块创建RandomHorizontalFlip实例来实现一半概率的图像水平(左右)翻转。

apply(img, torchvision.transforms.RandomHorizontalFlip())
上下翻转不如左右翻转通用。但是至少对于样例图像,上下翻转不会造成识别障碍。下面我们创建RandomVerticalFlip实例来实现一半概率的图像垂直(上下)翻转。
apply(img, torchvision.transforms.RandomVerticalFlip())

在我们使用的样例图像里,猫在图像正中间,但一般情况下可能不是这样。池化层能降低卷积层对目标位置的敏感度。除此之外,我们还可以通过对图像随机裁剪来让物体以不同的比例出现在图像的不同位置,这同样能够降低模型对目标位置的敏感性。

在下面的代码里,我们每次随机裁剪出一块面积为原面积1010% \sim 100%10的区域,且该区域的宽和高之比随机取自0.5∼20.5 \sim 20.52,然后再将该区域的宽和高分别缩放到200像素。若无特殊说明,本节中aaabbb之间的随机数指的是从区间[a,b][a,b][a,b]中随机均匀采样所得到的连续值。

shape_aug = torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
### 变化颜色 另一类增广方法是变化颜色。我们可以从4个方面改变图像的颜色:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。在下面的例子里,我们将图像的亮度随机变化为原图亮度的$50%$($1-0.5$)$\sim 150%$($1+0.5$)。
apply(img, torchvision.transforms.ColorJitter(brightness=0.5))
我们也可以随机变化图像的色调。
apply(img, torchvision.transforms.ColorJitter(hue=0.5))

类似地,我们也可以随机变化图像的对比度。

apply(img, torchvision.transforms.ColorJitter(contrast=0.5))

我们也可以同时设置如何随机变化图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。

color_aug = torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

叠加多个图像

实际应用中我们会将多个图像增广方法叠加使用。我们可以通过Compose实例将上面定义的多个图像增广方法叠加起来,再应用到每张图像之上。

augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytorch深度学习-微调(fine tuning)

微调(fine tuning) 首先举一个例子,假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像…

c语言封闭曲线分割平面_高手的平面课堂:8种常用的设计排版方式,告别通宵加班...

重复、对比、对齐以及亲密性是传统平面排版的四大原则,即将元素重复运用(包括颜色、形状、材质、字体、空间关系等)以增加画面的条理性和整体性;避免页面上的元素形态与关系构建过于相似;画面上的每一元素都应该与另一个元素存在某种视觉联系…

我的世界java版和基岩版对比_基岩版Beta1.11.0.1发布

本帖来自好游快爆-我的世界精选推荐原帖作者:好游快爆用户3302482我的世界基岩版1.11.0.1测试版发布了,Minecraft基岩版1.11仍未发布,1.11.0.1为测试版本,Beta版本可能不稳定,并不代表最终版本质量,请在加入测试版之前…

机器人电焊电流电压怎么调_【华光】HG1000型电焊机现场校准仪

机器简介HG-1000型电焊机现场校准仪是依据检定规程JJG124-2005《电流表、电压表、功率表和电阻表检定规程》、JJG(航天)38-1987《直流标准电流源检定规程》、JJG(航天)51-1999《交流标准电流源检定规程》的要求而设计的校准设备。主要用来校验各种用电焊机(如交流手…

循环机换变速箱油教程_变速箱油用循环机换还是重力换更好?一次讲清楚,新手司机学学...

现在换变速箱油有些只要几百块钱,有些要一两千,之所以差价这么大是因为这里面涉及到换变速箱油时用什么方法去换油的问题。目前比较常见换油法是重力换油法和循环换油法。重力换油法就跟平时换机油是一样的,把变速箱底部的螺丝拧开之后让油滴…

mongodb python 存文件_Python保存MongoDB上的文件到本地的方法介绍

本文实例讲述了Python保存MongoDB上的文件到本地的方法。分享给大家供大家参考,具体如下:MongoDB上的文档通过GridFS来操作,Python也可以通过pymongo连接MongoDB数据库,使用pymongo模块的gridfs方法操作文档。以下示例是把MongoDB…

mongodb 监控权限_MongoDB - 监控

随着MongoDB中保存的数据越来越多,对MongoDB服务状态的监控也越来越重要,经常关注服务是否健康,才能防止故障以及优化。1.静态监控db.serverStatus()使用mongo命令进入shell客户端后输入以下命令可以查看MongoDB服务的状态,有助于…

pytorch深度学习-机器视觉-目标检测和边界框简介

机器视觉之目标检测和边界框简介 在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体…

消防荷载楼板按弹性还是塑性计算_第二节 消防登高面、消防救援场地和灭火救援窗...

一、定义1、消防登高面:登高消防车能够靠近高层主体建筑,便于消防车作业和消防人员进入高层建筑进行抢救人员和扑救火灾的建筑立面称为该建筑的消防登高面,也称建筑的消防扑救面。2、消防救援场地:在高层建筑的消防登高面一侧&…

深度学习-词嵌入(word2vec)

词嵌入(word2vec) 自然语言是一套用来表达含义的复杂系统。在这套系统中,词是表义的基本单元。顾名思义,词向量是用来表示词的向量,也可被认为是词的特征向量或表征。把词映射为实数域向量的技术也叫词嵌入&#xff0…

ggplot2箱式图两两比较_作图技巧024篇ggplot2在循环中的坑

“ggplot2在循环中的输出”生活科学哥-R语言科学 2020-12-23 8:28ggplot2用过之后,你肯定会爱上它;结合一些不错的包,可以得到非常有展现力的图片,但是呢,有时也会碰到一些奇怪的情况。今天来们来看看,其中…

深度学习-自然语言处理中的近似训练

自然语言处理中的近似训练 跳字模型的核心在于使用softmax运算得到给定中心词wcw_cwc​来生成背景词wow_owo​的条件概率 P(wo∣wc)exp(uo⊤vc)∑i∈Vexp(ui⊤vc).P(w_o \mid w_c) \frac{\text{exp}(\boldsymbol{u}_o^\top \boldsymbol{v}_c)}{ \sum_{i \in \mathcal{V}} \te…

pytorch-word2vec的实例实现

word2vec的实例实现 实现词嵌入word2vec中的跳字模型和近似训练中的负采样以及二次采样(subsampling),在语料库上训练词嵌入模型的实现。 首先导入实验所需的包或模块。 import collections import math import random import sys import …

pytorch-LSTM的输入和输出尺寸

LSTM的输入和输出尺寸 CLASS torch.nn.LSTM(*args, **kwargs)Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each element in the input sequence, each layer computes the following function: 对于一个输入序列实现多层长短期记忆的…

python中的[-1]、[:-1]、[::-1]、[n::-1]

import numpy as np anp.random.rand(4) print(a)[0.48720333 0.67178384 0.65662903 0.40513918]print(a[-1]) #取最后一个元素 0.4051391774882336print(a[:-1]) #去除最后一个元素 [0.48720333 0.67178384 0.65662903]print(a[::-1]) #逆序 [0.40513918 0.65662903 0.67178…

torchtext.data.Field

torchtext.data.Field 类接口 class torchtext.data.Field(sequentialTrue, use_vocabTrue, init_tokenNone, eos_tokenNone, fix_lengthNone, dtypetorch.int64, preprocessingNone, postprocessingNone, lowerFalse, tokenizeNone, tokenizer_languageen, include_lengthsF…

np.triu

np.triu numpy.triu(m, k0) Upper triangle of an array. Return a copy of a matrix with the elements below the k-th diagonal zeroed. 返回一个矩阵的上三角矩阵,第k条对角线以下的元素归零 例如: import numpy as np np.triu(np.ones([4,4]), …

python读取json格式的超参数

python读取json格式的超参数 json文件: {"full_finetuning": true,"max_len": 180,"learning_rate": 3e-5,"weight_decay": 0.01,"clip_grad": 2,"batch_size": 30,"epoch_num": 20,"…

python缺少标准库_干货分享:Python如何自动导入缺失的库

很多同学在写Python项目时会遇到导入模块失败的情况:ImportError: No module named xxx或者ModuleNotFoundError: No module named xxx。导入模块失败通常分为两种:一种是导入自己写的模块(即以 .py 为后缀的文件),另一种是导入三方库。接下来…

.val()数据乱码_【目标检测数据集】PASCAL VOC制作

【VOC20072012】数据集地址:https://pjreddie.com/projects/pascal-voc-dataset-mirror/PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,用于构建和评估用于图像分类(Classification),检测(O…