1 数据结构
userCount:用户数
itemCount:项目数
user_ratings:ArrayList<ArrayList>,
问:此处为什么要用二维数组?
答:第1维是用户,第2维是用户对所有项目的评分。
testRatings:ArrayList
问:此处为什么只用一维数组?
答:个人认为这个处理有问题,因为每个用户有1-2个评分作为测试集,如果用一维数组,则数组的下标就不能和用户id(userId)一一对应。
2 读取评分:ReadRatings_HoldOneOut
步骤如下:
- 从文件中一行行读取,然后存入user_ratings中,存储后如下:
用户0:
[<0,0,4.0,0>,<0,1,4.0,0>,…,<0,64,5.0,0>,<0,65,3.0,0>][<0,0,4.0,0>, <0,1,4.0,0>, \dots, <0,64,5.0,0>, <0,65,3.0,0>][<0,0,4.0,0>,<0,1,4.0,0>,…,<0,64,5.0,0>,<0,65,3.0,0>]
注:<userId, itemId, score, timestamp>,<0,0,4.0,0><0,0,4.0,0><0,0,4.0,0>可以解读为用户0对项目0在0时刻评分为4.0分。
用户1:
[<1,0,5.0,0>,<1,66,4.0,0>,…,<1,192,1.0,0>,<1,193,5.0,0>][<1,0,5.0,0>, <1,66,4.0,0>, \dots, <1,192,1.0,0>, <1,193,5.0,0>][<1,0,5.0,0>,<1,66,4.0,0>,…,<1,192,1.0,0>,<1,193,5.0,0>]
用户2:
[<2,0,5.0,0>,<2,194,5.0,0>,…,<2,202,5.0,0>,<2,203,5.0,0>][<2,0,5.0,0>, <2,194,5.0,0>, \dots, <2,202,5.0,0>, <2,203,5.0,0>][<2,0,5.0,0>,<2,194,5.0,0>,…,<2,202,5.0,0>,<2,203,5.0,0>] - 利用user_ratings构造训练集和测试集testRatings
[<0,65,3.0,0>,<0,64,5.0,0>,<1,193,5.0,0>,<1,192,1.0,0>,<2,203,5.0,0>,<2,202,5.0,0>,<3,278,5.0,0>,<3,277,4.0,0>,<4,290,4.0,0>,<4,289,5.0,0>,<5,328,2.0,0>,<5,327,5.0,0>,<6,394,4.0,0>,<6,393,5.0,0>,<7,406,5.0,0>,<7,405,2.0,0>,<8,420,3.0,0>,<8,419,3.0,0>,<9,482,5.0,0>,<9,481,4.0,0>,…][<0,65,3.0,0>, <0,64,5.0,0>, <1,193,5.0,0>, <1,192,1.0,0>, <2,203,5.0,0>, <2,202,5.0,0>, <3,278,5.0,0>, < 3,277,4.0,0>, <4,290,4.0,0>, <4,289,5.0,0>, <5,328,2.0,0>, <5,327,5.0,0>, <6,394,4.0,0>, <6,393,5.0,0>, <7,406,5.0,0>, <7,405,2.0,0>, <8,420,3.0,0>, <8,419,3.0,0>, <9,482,5.0,0>, <9,481,4.0,0>, \dots][<0,65,3.0,0>,<0,64,5.0,0>,<1,193,5.0,0>,<1,192,1.0,0>,<2,203,5.0,0>,<2,202,5.0,0>,<3,278,5.0,0>,<3,277,4.0,0>,<4,290,4.0,0>,<4,289,5.0,0>,<5,328,2.0,0>,<5,327,5.0,0>,<6,394,4.0,0>,<6,393,5.0,0>,<7,406,5.0,0>,<7,405,2.0,0>,<8,420,3.0,0>,<8,419,3.0,0>,<9,482,5.0,0>,<9,481,4.0,0>,…]
问:这种方式有问题没有?
答:有,测试集由于是一个一维的列表,导致利用testRatings.get(u).itemId这个代码来取数据的时候,u并不是指代某个用户id,而是列表中某个位置的下标,容易误解为用户id和项目id不匹配。
上面的不匹配是由于下面的代码导致的,由于每一个用户将最后两个评分加入到测试集,导致用户id和列表的下标对应不上。
//if (i == ratings.size() - 1) { // test
if (i == ratings.size() - 1 || i == ratings.size() - 2) { // testtestRatings.add(ratings.get(i));//the size of testing = the number of users.
} else { // traintrainMatrix.setValue(userId, itemId, ratings.get(i).score);
}//of if
方案(1):改成如下代码即可,使得每个用户只有一个评分加入测试集,即测试集大小和用户数一致
if (i == ratings.size() - 1) { // test
//if (i == ratings.size() - 1 || i == ratings.size() - 2) { // testtestRatings.add(ratings.get(i));//the size of testing = the number of users.
} else { // traintrainMatrix.setValue(userId, itemId, ratings.get(i).score);
}//of if
方案(2):可以用二维列表来存储测试集。
3 evaluate_for_user的理解
3.1 数据结构
map_item_score:HashMap<Integer, Double>,散列表。HashMap的主干是一个Entry数组,Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。
HashMap<Integer, Double> map_item_score = new HashMap<Integer, Double>();
ignoreSet:HashSet ,HashSet 基于 HashMap 来实现的,一个不允许有重复元素的集合。
3.2 代码解读
/*** Evaluation for a specific user with given GT item.对具有给定Groud-Truth项目的特定用户的评估* @return:* result[0]: hit ratio* result[1]: ndcg* result[2]: precision*/protected double[] evaluate_for_user(int u, int gtItem) {double[] result = new double[3];HashMap<Integer, Double> map_item_score = new HashMap<Integer, Double>();// Get the score of the test item first.double maxScore = predict(u, gtItem);// Early stopping if there are topK items larger than maxScore.int countLarger = 0;for (int i = 0; i < itemCount; i++) {double score = predict(u, i);//预测用户u对所有项目的评分map_item_score.put(i, score);//将预测评分放入散列表中,key为i,value为score//下面的两句的作用是只要gtItem没有进入TopK则不计算三个评价指标?if (score > maxScore) countLarger ++;if (countLarger > topK) return result; // early stopping}// Selecting topK items (does not exclude train items).ArrayList<Integer> rankList = ignoreTrain ? CommonUtils.TopKeysByValue(map_item_score, topK, trainMatrix.getRowRef(u).indexList()) : CommonUtils.TopKeysByValue(map_item_score, topK, null);result[0] = getHitRatio(rankList, gtItem);result[1] = getNDCG(rankList, gtItem);result[2] = getPrecision(rankList, gtItem);return result;}/*** Get the topK keys (by its value) of a map. Does not consider the keys which are in ignoreKeys.* @param map* @return*/public static<K, V extends Comparable<? super V>> ArrayList<K> TopKeysByValue(Map<K, V> map, int topK, ArrayList<K> ignoreKeys) {HashSet<K> ignoreSet;if (ignoreKeys == null) {ignoreSet = new HashSet<K>();} else {ignoreSet = new HashSet<K> (ignoreKeys);//将训练集中用户u购买过的项目放入ignoreSet}//因为map保存的是所有项目,如果要忽略训练集中的项目,则将训练集之外的项目写入topQueueTopKPriorityQueue<K, V> topQueue = new TopKPriorityQueue<K, V>(topK);for (Map.Entry<K, V> entry : map.entrySet()) {if (!ignoreSet.contains(entry.getKey())) {topQueue.add(entry);}}//对topQueue中的元素进行排序,排序后保存在topKeys并返回ArrayList<K> topKeys = new ArrayList<K>();for (Map.Entry<K, V> entry : topQueue.sortedList()) {topKeys.add(entry.getKey());}return topKeys;}public ArrayList<Map.Entry<K, V>> sortedList() {ArrayList<Map.Entry<K, V>> list = new ArrayList<Map.Entry<K, V>>(queue); Collections.sort(list, c.reversed()); return list;}
Collections.sort参考博客https://baijiahao.baidu.com/s?id=1660417080221659283&wfr=spider&for=pc
这里还用到了一个非常重要的接口Comparable。
功能: Comparable接口可用于对象的排序或者对象的分组
介绍: Comparable接口强行对实现它的类的每个实例进行自然排序,该接口的唯一方法compareTo方法被称为自然比较方法
方法: int compareTo(Object o)
利用当前对象和传入的目标对象进行比较:
- 若是当前对象比目标对象大,则返回1,那么当前对象会排在目标对象的后面
- 若是当前对象比目标对象小,则返回-1,那么当前对象会排在目标对象的后面
- 若是两个对象相等,则返回0
import java.util.Arrays;public class User implements Comparable<User> {public int age;public String username;public User(int age, String username) {this.age = age;this.username = username;}@Overridepublic String toString() {return this.username;}@Overridepublic int compareTo(User o) {if(this.age>o.age) {return 1;} else if(this.age<o.age) {return -1;} else {return 0;}}public static void main(String[] args) {User[] arr = new User[3];arr[0] = new User(15,"user1");arr[1] = new User(10,"user2");arr[2] = new User(20,"user3");System.out.println("排序前:" + Arrays.toString(arr));Arrays.sort(arr);System.out.println("排序后:" + Arrays.toString(arr));}
}排序前:[user1, user2, user3]
排序后:[user2, user1, user3]