推荐系统--矩阵分解(2)

推荐系统–矩阵分解(1)
推荐系统–矩阵分解(2)
推荐系统–矩阵分解(3)
推荐系统–矩阵分解(4)
推荐系统–矩阵分解(5)
推荐系统–矩阵分解(6)

3 BiasSVD:考虑偏置

有一些用户会给出偏高的评分,有一些物品也会收到偏高的评分,比如电影观众为铁粉,一些受某时期某事件影响的电影。所以需要考虑偏置对评分的影响,其公式如下:
L(θ)=arg⁡min⁡⏟pu,qi∑u,i(rui−μ−bu−bi−puTqi)2+λ(∥pu∥22+∥qi∥22+∥bu∥22+∥bi∥22)(4)\begin{aligned} L(\theta)=\underbrace{\arg \min }_{p_{u}, q_{i}} \sum_{u, i}\left(r_{u i}-\mu-b_{u}-b_{i}-p_{u}^{T} q_{i} \right)^{2} \\ +\lambda\left(\left\|p_{u}\right\|_{2}^{2}+\left\|q_{i}\right\|_{2}^{2}+\left\|b_{u}\right\|_{2}^{2}+\left\|b_{i}\right\|_{2}^{2}\right) \end{aligned} \tag4L(θ)=pu,qiargminu,i(ruiμbubipuTqi)2+λ(pu22+qi22+bu22+bi22)(4)
符号说明:
用户的预测评分为:rui^=puTqi+μ+bu+bi\hat{r_{ui}} = p_{u}^T q_{i} + \mu + b_{u} + b_{i}rui^=puTqi+μ+bu+bi
偏差为:eui=rui−rui^e_{ui}=r_{ui}-\hat{r_{ui}}eui=ruirui^
μ\muμ:训练集中所有评分记录的全局平均数,表示了训练数据的总体评分情况,对于固定的数据集,它是一个常数;
bub_ubu:用户uuu的偏置,独立于物品特征的因素,表示某一特定用户的打分习惯。例如,对于批判性用户对于自己的评分比较苛刻,倾向于打低分;而乐观型用户则打分比较保守,总体打分要偏高;
bib_ibi:物品iii的偏置,特立于用户兴趣的因素,表示某一特定物品得到的打分情况。以电影为例,好片获得的总体评分偏高,而烂片获得的评分普遍偏低,物品偏置捕获的就是这样的特征。
对公式(4)求偏导,理后可以得到迭代公式为:
pu,k=pu,k+η(euiqk,i−λpu,k)qk,i=qk,i+η(euipu,k−λqi,k)bu=bu+η(eui−λbu)bi=bi+η(eui−λbi)(5)\begin{aligned} p_{u, k} &=p_{u, k}+\eta\left(e_{u i} q_{k, i}-\lambda p_{u, k}\right) \\ q_{k, i} &=q_{k, i}+\eta\left(e_{u i} p_{u, k}-\lambda q_{i, k}\right) \\ b_{u} &=b_{u}+\eta\left(e_{ui} -\lambda b_{u}\right) \\ b_{i} &=b_{i}+\eta\left(e_{ui} -\lambda b_{i}\right) \end{aligned} \tag5 pu,kqk,ibubi=pu,k+η(euiqk,iλpu,k)=qk,i+η(euipu,kλqi,k)=bu+η(euiλbu)=bi+η(euiλbi)(5)

4 SVD++:增加历史行为

通过观看B站上的视频,终于把SVD++核心思想搞清楚了:

  • 它是来探索物品与物品之间关联关系的,比如对逃学威龙1评分高的人,可能也会给逃学威龙2高评分;
  • 由于需要探索物品与物品之间的关联关系,可以使用显式反馈,也可以使用显式反馈+隐式反馈;
  • 利用隐式反馈来探索物品与物品之间的关联关系,信息更加丰富:少数用户会主动点评电影或者美食,大多数用户只会浏览或者观看,也就是说显式反馈比隐式反馈少。

SVD++模型的步骤如下:

  • 对于某一个用户uuu,它提供了反馈的物品集合定义为N(u)N(u)N(u)
  • 假设j∈N(u)j \in N(u)jN(u),该物品jjj和预测物品iii之间的关系为wijw_{ij}wij
  • 将这个关系作为预测评分的一个部分,则有如下公式:
    rui^=μ+bu+bi+puTqi+1∣N(u)∣∑j∈N(u)wij(6)\begin{aligned} \hat{r_{ui}}=\mu+b_{u}+b_{i}+p_{u}^T q_{i} + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)}w_{ij} \tag6 \end{aligned} rui^=μ+bu+bi+puTqi+N(u)1jN(u)wij(6)
    引入1∣N(u)∣\frac{1}{\sqrt{|N(u)|}}N(u)1是为了消除不同∣N(u)∣|N(u)|N(u)个数引起的差异。
    WWW矩阵如下表所示:
t1t_1t1t2t_2t2t3t_3t3t4t_4t4
t1t_1t1w11w_{11}w11w12w_{12}w12w13w_{13}w13w14w_{14}w14
t2t_2t2w21w_{21}w21w22w_{22}w22w23w_{23}w23w24w_{24}w24
t3t_3t3w31w_{31}w31w32w_{32}w32w33w_{33}w33w34w_{34}w34
t4t_4t4w41w_{41}w41w42w_{42}w42w43w_{43}w43w44w_{44}w44
  • WWW矩阵维度为n×nn \times nn×n,维度很大,我们对WWW进行矩阵分解后得到如下公式:
    rui^=μ+bu+bi+puTqi+1∣N(u)∣xuT∑j∈N(u)yj(7)\begin{aligned} \hat{r_{ui}}=\mu+b_{u}+b_{i}+p_{u}^{T} q_{i} + \frac{1}{\sqrt{|N(u)|}} x_u^T \sum_{j \in N(u)}y_{j} \tag7 \end{aligned} rui^=μ+bu+bi+puTqi+N(u)1xuTjN(u)yj(7)
    在这里插入图片描述
  • xux_uxu表示用户的隐向量,可以用pup_upu替换,这样就减少了对WWW矩阵的分解,则上式可以表示为:
    rui^=μ+bu+bi+puTqi+1∣N(u)∣puT∑j∈N(u)yj=μ+bu+bi+puT(qi+1∣N(u)∣∑j∈N(u)yj)(10)\begin{aligned} \hat{r_{ui}}=\mu+b_{u}+b_{i}+p_{u}^{T} q_{i} + \frac{1}{\sqrt{|N(u)|}} p_u^T \sum_{j \in N(u)}y_{j} \\ = \mu+b_{u}+b_{i}+p_{u}^{T} \left(q_{i} + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)}y_{j}\right)\tag{10} \end{aligned} rui^=μ+bu+bi+puTqi+N(u)1puTjN(u)yj=μ+bu+bi+puTqi+N(u)1jN(u)yj(10)

其优化目标函数:
L(θ)=arg⁡min⁡⏟pu,qi∑u,i(rui−μ−bu−bi−puTqi−puT1∣N(u)∣∑j∈N(u)yj)2+λ(∥pu∥22+∥qi∥22+∥bu∥22+∥bi∥22+∑j∈N(u)∥yj∥22)(11)\begin{aligned} L(\theta) = \underbrace{\arg \min }_{p_{u}, q_{i}} \sum_{u, i}\left(r_{ui}-\mu-b_{u}-b_{i}-p_{u}^{T} q_{i} -p_{u}^{T} \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} y_{j}\right)^{2} \\ +\lambda\left(\left\|p_{u}\right\|_{2}^{2}+\left\|q_{i}\right\|_{2}^{2}+\left\|b_{u}\right\|_{2}^{2}+\left\|b_{i}\right\|_{2}^{2}+\sum_{j \in N(u)}\left\|y_{j}\right\|_{2}^{2}\right) \end{aligned} \tag{11} L(θ)=pu,qiargminu,iruiμbubipuTqipuTN(u)1jN(u)yj2+λpu22+qi22+bu22+bi22+jN(u)yj22(11)

对公式(11)求偏导,令eui=rui−rui^e_{ui}=r_{ui}- \hat{r_{ui}}eui=ruirui^,整理后可以得到迭代公式:
bu=bu+η⋅(eui−λ⋅bu)bi=bi+η⋅(eui−λ⋅bi)pu=pu+η⋅(eui⋅qi−λ⋅pu)qi=qi+η⋅(eui(pu+1∣N(u)∣∑j∈N(u)yj)−λ⋅qi)yj=yj+η⋅(eui⋅1∣N(u)∣qi−λ⋅qi)(12)\begin{aligned} b_u = b_u + \eta \cdot (e_{ui} - \lambda \cdot b_u) \\ b_i = b_i + \eta \cdot (e_{ui} - \lambda \cdot b_i) \\ p_u = p_u + \eta \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u) \\ q_i = q_i + \eta \cdot (e_{ui}(p_u + \frac{1}{\sqrt{|N(u)|}}\sum_{j \in N(u)} y_j) - \lambda \cdot q_i) \\ y_j = y_j + \eta \cdot (e_{ui} \cdot \frac{1}{\sqrt{|N(u)|}} q_i - \lambda \cdot q_i) \\ \end{aligned} \tag{12} bu=bu+η(euiλbu)bi=bi+η(euiλbi)pu=pu+η(euiqiλpu)qi=qi+η(eui(pu+N(u)1jN(u)yj)λqi)yj=yj+η(euiN(u)1qiλqi)(12)
参考的迭代公式如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

tga文件怎么打开_教你win10系统怎么打开stp文件

stp文件怎么打开呢?近来有很多小伙伴反映有朋友发送了一个stp文件给它,搞了半天也没能打开。其实打开stp文件很简单,不过前提是需要有绘图软件。我给大家整理了打开stp文件的图文教程,赶紧来瞧瞧吧有些朋友在使用win10系统的过程中…

推荐系统--矩阵分解(4)

推荐系统–矩阵分解(1) 推荐系统–矩阵分解(2) 推荐系统–矩阵分解(3) 推荐系统–矩阵分解(4) 推荐系统–矩阵分解(5) 推荐系统–矩阵分解(6) 7 基于情感分析的矩阵分解 7.1 引入 【摘要】推荐系统旨在基于丰富的信息预测用户的偏好,例如用户评分、人口统计和评论…

yarn 卸载包_0609-6.1.0-如何卸载CDH6.1

1.文档编写目的Fayson在两年前的文章中介绍过CDH的卸载,参考《如何卸载CDH(附一键卸载github源码)》。除非你是使用Cloudera官方提供的一键安装脚本安装的CDH,否则并没有现成的一键卸载的脚本供使用。为了更好的理解CDH的卸载,这里再次简单介…

xss跨站脚本攻击_网络安全xss跨站脚本攻击原理

以下在未经授权的网站操作均为违法行为XSS跨站脚本攻击xss的危害网络钓鱼,盗取各类账号密码我们先来看一下下面的案例:先来记住一下下面中的表我们来做一个转发上面页面显示已经登录,但是突然页面中提醒再此登录此时,我们并没有多…

推荐系统--联邦学习下的矩阵分解(6)

推荐系统–矩阵分解(1) 推荐系统–矩阵分解(2) 推荐系统–矩阵分解(3) 推荐系统–矩阵分解(4) 推荐系统–矩阵分解(5) 推荐系统–矩阵分解(6) 9 应用于联邦学习的矩阵分解 这个部分主要参考以下两篇论文: 2008-Collaborative Filtering for Implicit Feedback Dat…

什么是联邦学习

联邦学习 1.1 联邦学习的概念 历史:联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题; 本质:联邦学习本质上是一种分布式机器学习技术,或机器学习框架。 目标:联邦学…

循环自增_大学C语言—循环结构及应用

基础知识常见循环结构及形式for循环for(设置初始值;循环条件判断;设置循环增减量){语句1;语句2;…… 语句n;}while循环while(条件判断){语句1;语句2;……语句n;}do-while循环d…

dac0832控制电机驱动流程图_某驱动电机控制器拆解实拍照片

小编作为一个电控专业100%小白,机缘巧合获得某纯电动汽车驱动电机控制器一台,拆解之,权为业内人士参考之用,文中显得外行、用词不对及谬误之处还请各位大神不吝赐教!外观标牌背面拆解固定托架侧面拆解固定托架拆解固定…

推荐系统--安全联邦矩阵分解(7)

相关论文: Secure Federated Matrix Factorization 论文源代码见: https://github.com/Di-Chai/FedMF 1 摘要 为了保护用户隐私和满足法律法规,联邦(机器)学习近年来获得了广泛的关注。 联邦学习的关键原则是在不需要知道每个用…

联邦学习--数据攻击(1)

参考论文:Deep Leakage from Gradients(NeurIPS 2019) 源代码: https://github.com/mit-han-lab/dlg 核心思想:作者通过实验得到,从梯度可以反推用户的个人信息。并验证了其在计算机视觉和自然语言处理任务…

联邦学习--数据攻击(2)

参考论文:See through Gradients: Image Batch Recovery via GradInversion(CVPR 2021 ) 源代码: 核心思想:解决了Deep Leakage from Gradients(NeurIPS 2019)中batch大于1效果无效的情况。 缺点…

对抗攻击(1)

本文是根据李宏毅老师在B站上的视频整理而来,视频地址为: https://www.bilibili.com/video/BV1n3411y7xD?p65 1 无目标和有目标攻击的区别 无目标攻击:攻击后的标签不确定,只要是和原始标签差别越大越好。 有目标攻击&#xff…

自注意力机制Self-attention(1)

目录: 自注意力机制Self-attention(1) 自注意力机制Self-attention(2) 本文是对李宏毅老师的课程进行了整理。 视频地址为: https://www.bilibili.com/video/BV1Wv411h7kN?p23 1 问题引入 问&#xff1a…

id门禁卡复制到手机_手机NFC有哪些功能?怎么设置手机门禁卡?别浪费了手机的NFC功能...

NFC功能早前都运用一些手机旗舰机中,随着手机技术的发展,现在有许多的手机都有NFC的功能,那手机中的NFC只是个摆设吗?NFC不仅仅有不依靠数据网络、安全稳定的特点,其实还有许多你不知道的功能!比如可以用来…

自注意力机制Self-attention(2)

目录: 自注意力机制Self-attention(1) 自注意力机制Self-attention(2) 1 内容回顾 以b2b^2b2的计算过程为例来说明: query: q1Wqa1q^1 W^q a^1q1Wqa1, q2Wqa2q^2 W^q a^2q2Wqa2, q3Wqa3q^3 …

风格迁移模型测试效果

1 模型简介 Selfie2anime模型:动漫风格,训练集主要针对人物头像;对应论文为:U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation Hayao模型&a…

黑白棋级别预测

1 当前成果 上图是对于AI级别为40级以下的对局结果统计图,横坐标是对于AI级与当前模型预测级别的差值,纵坐标是玩家的胜率。由图中可以看出,玩家胜率符合预测。当AI级别比预测级别高时,玩家胜率越来越低,反之玩家胜率会…

风格迁移--U-GAT-IT模型(ICLR 2020)

1 论文简介 论文题目: U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation 论文代码:https://github.com/taki0112/UGATIT 论文数据集:https://github.co…

毕业大论文到底怎么写?

本文主要写给本科生的,研究生也可以作为参考。 1 题目 题目建议控制在25字以内,能突出显示自己的主要工作即可。 “问题方法”式。比如:恶意流量检测的矩阵分解算法研究,问题是恶意流量检测,方法为矩阵分解&#xf…

麻雀优化算法_多种智能优化算法应用案例分享-附代码

1.智能优化算法应用:基于灰狼算法的Otsu图像多阈值分割智能优化算法应用:基于灰狼算法的Otsu图像多阈值分割-附代码_Jack旭的博客-CSDN博客​blog.csdn.net2.智能优化算法应用:基于灰狼算法的二维Otsu图像阈值分割智能优化算法应用&#xff1…