人工智能产业2018年待解的三大难题

来源:人民邮电报

概要:2017年,人工智能领域在算法、政策、资金等方面已经出现了三大突破,业界欢欣鼓舞的情形很像1999年年底网络泡沫泛滥时的情形。


2017年,人工智能领域在算法、政策、资金等方面已经出现了三大突破,业界欢欣鼓舞的情形很像1999年年底网络泡沫泛滥时的情形。展望2018年,偌大的人工智能领域,优秀项目不够、顶尖人才不足、场景落地缺乏等将成为横亘在人工智能领域面前的三大难题。


资金很多,项目不够用了


当前的AI产业发展面临泡沫化的风险,主要体现在投资供应数量大而项目供给数量少,市场对创业项目寄予很高的期望,而实际的产品体验欠佳,泡沫即将出现。


腾讯研究院发布的《中美两国人工智能产业发展全面解读》报告,分析了引发行业泡沫的两个信号。一是资金多而项目缺。根据过往数据和2017年上半年的情况预测,2017年美国新增企业数量将跌到谷底,数量在25~30家之间。同时,美国的累计融资量持续快速增长,最后将稳定在1380亿~1500亿元之间。


2018年,中美两国AI企业数量增长都将有所恢复,但增长速度依然平缓。这段时期,创投圈将会发现,找到一个新的有潜力的项目越来越难,由于新增企业数量稀少,经常只能跟投一些项目。


到2020年,美国AI公司累计数量将会超过1200家,累计融资额将达到2000亿元。中国AI企业增势不明朗。根据行业发展周期来计算,中国人工智能产业将会在2018年回暖,新增公司数量会上涨到30家以上,预期融资累计量将会达到900亿~1000亿元。


二是周期长而营收难。可以说人工智能期望值被大大高估了。引领本轮AI热潮的深度学习,起源于上世纪80~90年代的神经网络研究。在很多情况下,前沿研究方法是由对已有方法的微小改动和改进而来,而这些方法在几十年前就已经被设计出来了。


2006年,深度学习算法获得了突破后,引起市场热炒,但相关的AI技术和产品的成熟度仍然有限,甚至被讥笑为“人工智障”。许多项目和技术,要想获得消费者欢迎,还需要等待相当长的时间。


从投融资趋势来看,涌入人工智能领域的资金依然还会增加。据不完全统计,2017年中国人工智能领域的投融资事件约353起,比2016年稍有回落。但投资金额激增,总融资金额近600亿元,在政府的鼓励和行业并购中,2018年中国AI的投资额将会持续大幅增加。


同时,行业并购开始加剧。CBInsights提供的数据显示,自2011年以来,已有近140家人工智能初创公司被收购,而2017年的第一季度,海外就有34家人工智能初创公司被收购,为2016年同期的两倍。2018年,仍将延续这一趋势。在资金增长的同时,中国AI企业数量不会同幅增长。根据行业发展周期来计算,中国人工智能产业将会在2018年呈现缓慢增长趋势,预期累计融资量将会达到900亿~1000亿元,而新增公司数量仅会上涨到30家左右。


资金多而项目缺,周期长而营收难,项目却一天比一天更加昂贵,这种情形与1999年的第一次互联网泡沫时非常相似。


事情很多,人不够用了


算法大神YoshuaBengio曾表示:“深度学习现在很热门,目前的困境是缺乏专家,一个博士生大概需要五年的培养时间,但是五年前还没有博士生开始从事深度学习,这意味着现在该领域的专家特别少,可以说弥足珍贵、极度稀缺。”这是三年前AI面临的困境,至今依然未得到改善,甚至变得更加严峻。


人工智能竞争的根本就是争夺顶级人才。据说世界上深度学习领域的顶尖人才不超过50人,因此科技巨头们纷纷通过收购初创公司来招揽人才。


作为国家未来的发展方向,AI技术对于经济发展、产业转型和科技进步起着至关重要的作用,而AI技术的研发、落地与推广离不开各领域顶级人才的通力协作。在推动AI产业从兴起进入快速发展的历程中,AI顶级人才的领军作用尤为重要,他们是推动人工智能发展的关键因素。然而,中国人工智能领域人才极为欠缺。


据腾讯研究院发布的《2017全球人工智能人才白皮书》显示,目前我国约有20所大学的研究实验室专注于人工智能,高校教师以及在读硕博生约7000人;产业界现存人员人数约为39000人,远不能满足我国市场百万级的AI人才需求量。


从产业发展来看,我国人工智能领域人才分布严重失衡。人工智能产业由基础层(芯片/处理器、传感器等)、技术层(自然语言处理、计算机视觉与图像、机器学习/深度学习、智能机器人等)和应用层(语音识别、人脸识别)等组成,目前我国在产业层次人才上面临两个问题。一是产业分布不均。中国AI产业的主要从业人员集中在应用层,基础层和技术层人才储备薄弱,尤其是处理器/芯片和AI技术平台上人才缺乏,会严重削弱中国在国际上的竞争力。


二是供求严重失衡,人才缺口很难在短期内得到有效填补。过去三年中,我国期望在AI领域工作的求职者正以每年翻倍的速度迅猛增长,特别是偏基础层面的AI职位,如算法工程师,供应增幅达到150%以上。尽管增长如此高速,但是由于合格AI人才培养所需时间和成本远高于一般IT人才,人才缺口很难在短期内得到有效填补。人才不足,是制约中国AI产业发展的主要因素。


近几年来,Google不断收购AI领域公司最主要目的是“抢购”一批世界上一流的专家,在一个迅速成长的人工智能领域里面,这些专家无一不是佼佼者。其他科技巨头也在相机而动。2018年,人才饥渴症不会得到缓解。


场景很多,路不好走了


梳理一下2017全年的AI产业大事件可以发现,医疗、金融、无人驾驶等三大热点在吊足了公众胃口的同时,尚有疑问待解。


一是AI医疗的变革信号在哪里?


2017年的每个月中,都有VC流入AI+医疗领域,国内所有医疗人工智能公司累计融资额已超过180亿元。


科技企业智能医疗的布局与应用已有雏形,IBMWaston已应用于临床诊断和治疗,2016年就已进入中国在多家医院推广。阿里健康重点打造医学影像智能诊断平台;腾讯在2017年8月推出腾讯觅影,可辅助医生对食管癌进行筛查。图玛深维2017年11月获投2亿元,正在把深度学习引入到计算机辅助诊断系统中;晶泰科技(XtalPi)近期也融资1500万美元,用于开发新一代的智能药物研发技术,以解决药物临床前研究中的效率与成功率问题。


遗憾的是,尽管政府亮起绿灯,企业投了人力、财力,但人工智能却并没有在医疗领域推出爆发式应用。原因在于人工智能需要大量共享数据,而医院和患者的数据如同孤岛。如何打破各方壁垒,在保障健康的同时又保障数据安全性?这将是推动智能医疗快速发展中需要解决的问题。


二是AI如何深层次地撬动金融?


与智能医疗一样面临数据问题的还有金融领域,大量的可信度较高的数据掌握在各大银行手中,AI怎么能够撬出这些数据以推动金融科技的创新,是创业者们绞尽脑汁思考的课题。


当前,应用人脸识别、指纹识别技术作为验证客户身份、远程开户、刷脸支付的方案,已经发展成熟,正在逐步推广。


如何利用知识图谱挖掘潜在客户和深挖客户潜在需求的技术也已较为成熟,而数据源的问题亟待解决。


美国科技公司FutureAdvisor最早研制出“机器人理财顾问”。随后,此类机器人理财顾问迅速风靡全球。


2017年智能投股曾被视为是下一个风口。但是,机器人炒股的结果是赔了。


三是智能汽车究竟何时上市?


无人驾驶汽车被称为“四轮机器人”,但其发展何时会像智能手机一般人手一部、彻底颠覆传统手机进而推动整个产业变革?这个问题仍然没有答案。


2017年,汽车行业内智能造车势力动作不断,其中一部分已陆续交出答卷,让产品接受市场的检验,而另一部分仍在“温室”中培养,等待结果。所以称之为“温室”,是因为各行各业都对其予以厚望,尤其是在投融资上,虽然投资事件数不多,但金额已达234亿元。


百度宣布开放阿波罗平台;阿里巴巴与上汽集团等传统车企展开合作;腾讯成功入股特斯拉成为第五大股东,领投入股的蔚来汽车的首款纯电动产品已正式上市。


时间正在跟我们赛跑。2017年12月20日,一支百度Apollo无人车车队,在雄安新区测试开跑。2018年年初,北京顺义区无人驾驶试运营基地正式启动,成为北京出台国内首部自动驾驶新规以来,该市首个开展无人驾驶试运营的区域。2018年,哪辆无人汽车会上路?行业和消费者都在拭目以待。


回顾2000年互联网泡沫的破灭,很多人依然觉得不可思议。那时候的产业发展日新月异,软件应用、网络服务ISP与网络内容ICP等均在爆发,常有一日不见如隔三秋的感叹。


2000年4月,纳斯达克指数一路狂飙突进到历史顶点,5400多点。但不幸泡沫破裂,资本市场崩盘。纳斯达克指数迅速滑落。寒冬持续了3年时间,才慢慢回暖。


如今的AI产业正蓬勃发展,与互联网初期阶段何其相似。


产业带着耀眼的光环,肩负国家战略的重任,高度依赖资本市场渠道,舆论高度爆炒,从业者无不都是“三高”社会精英。


但美中不足的是,上市的产品却体验欠佳,应用场景略显不足,鱼目混珠的项目时有出现,泡沫的感觉越来越强。无论是政府还是企业,大家都应该对未来的风险加以防范。



未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。由互联网进化论作者,计算机博士刘锋与中国科学院虚拟经济与数据科学研究中心石勇、刘颖教授创建。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/497100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

矩阵连乘问题(c++)

矩阵连乘问题 问题描述: 给定n个矩阵:A1,A2,…,An,其中Ai与Ai1是可乘的,i1,2…,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩…

QuestMobile 2017年中国移动互联网年度报告

来源:QuestMobile2017年,科技的风口兜兜转转,从直播、VR到AI再到区块链、短视频泛娱乐IP,最终在2017年底定格在了知识付费上,然而这并没有结束,紧随知识付费而来的就是撒币、大撒币……这就是中国移动互联网…

Python 读写配置文件模块: configobj 和 configParser

参考:http://www.voidspace.org.uk/python/configobj.html Python模块之ConfigParser - 读写配置文件:http://www.cnblogs.com/victorwu/p/5762931.html Python 官网 configparser 文档:https://docs.python.org/3.7/library/configparser.…

快速排序(c++)

1、快速排序的思想 快速排序就是给基准数据找在数组中正确位置的过程,一旦基准位置的正确位置找到,那基准位置左右两边经过同样的步骤递归也可以有序,最终整体数组有序。 整体可以理解为三个步骤: 1、先从队尾开始向前扫描且当l …

设计模式之禅--思维导图

原图ProcessOn里搜索:设计模式之禅

有BRT,为啥还建公交港湾

原来快速公交和普通公交要一块儿跑历山路公交港湾示意图(制图:赵国陆)   “历山路上既然跑快速公交车,有BRT站台,还要公交港湾干吗?”21日,本报报道了新公交港湾将在历山路亮相的消息后,不少市…

2018展望| AI:巨头生态开始站队,深入垂直行业才能赚钱

来源:36氪“AI改变世界”这件事,在2018年会更值得人期待。不只是BAT,京东在谈智能仓储配送,滴滴在谈智慧交通……BAT,以及滴滴、京东这样的小巨头,手中攥着大量数据、也有直接服务消费者的场景,…

归并排序(c++)

归并排序 归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列&#x…

五大风口产业全景手绘图(新能源汽车、人工智能等)

来源:一览众车概要:五大风口产业全景手绘图(新能源汽车、人工智能等)一、新能源汽车二、人工智能三、住房租赁住房租赁产业蕴含着哪些发展机会?各参与方的竞争格局如何?未来人们租房会更便利吗?…

冒泡排序(c++)

冒泡排序(Bubble Sort) 是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复…

原型模式详解

PrototypeClass.java public class PrototypeClass implements Cloneable {Overridepublic PrototypeClass clone() {try {final PrototypeClass instance (PrototypeClass) super.clone();return instance;} catch (CloneNotSupportedException e) {return null;}} } 1、构…

选择排序(c++)

选择排序 选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找…

人机交互与智能的思考

来源: 人机与认知实验室概要:在过去的20年里,人工智能一直专注于围绕建设智能体所产生的问题,即在特定的情境下,可以感知并行动的各种系统,在这种情况下,智能是一个与统计学,和经济学相关的理性概念。1.智能…

享元模式详解

SignInfo.java public class SignInfo {/*** 报名人员ID.*/private String id;/*** 考试地点.*/private String location;/*** 考试科目.*/private String subject;/*** 邮寄地址.*/private String postAddress;/*** 获取id.* return the id*/public String getId() {return i…

Python 多进程 multiprocessing 使用示例

multiprocessing 文档:https://docs.python.org/zh-cn/3.10/library/multiprocessing.html Process、Lock、Semaphore、Queue、Pipe、Pool:https://cuiqingcai.com/3335.html 把一个多线程改成多进程,主要有下面几种方法: subpro…

IDC:2018年中国制造业十大预测

来源:先进制造业概要:2017年,中国制造业的竞争日趋激烈。生产成本压力增大以及经济下行趋势迫使中国制造企业的两极分化更加严重。日前,IDC发布了《IDC FutureScape:全球制造业2018预测——中国启示》,报告…

插入排序(c++)

插入排序 插入排序的工作方式像许多人排序一手扑克牌。开始时,我们的左手为空并且桌子上的牌面向下。然后,我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较。拿…

Python 操作 redis

官网命令(英文)列表:http://redis.io/commands Redis 教程:http://www.redis.net.cn/tutorial/3501.html Redis 命令参考:http://redisdoc.com/index.html Windows 中 redis 的下载及安装、设置:https://…

redis调优 -- 内存碎片

最近查看了一下redis运行状况,发现公司测试服务器的redis内存不太够用,但是实际占用内存的数据量其实不大,以前也没有这种情况,之前在cache层新增了一个防刷积分任务的逻辑才会这样,搜索一下原因,发现原来是…

2018 物联网产业分布展望:基础设施将到位

来源:36氪概要:在过去一年多的时间里,关于初创企业失败以及安全问题令人担忧等报道内容一直笼罩着物联网行业。在过去一年多的时间里,关于初创企业失败以及安全问题令人担忧等报道内容一直笼罩着物联网行业。但其实,物…