一.贪心算法
1.分饼干问题
#思路:排序加贪心 先让胃口小的孩子满足
class Solution:def findContentChildren(self, g, s):print('==g:', g)print('==s:', s)g = sorted(g)#孩子s = sorted(s)#饼干res = 0for j in range(len(s)):#遍历饼干 先给胃口小的分配if res<len(g):if g[res]<=s[j]:res+=1print('==res:', res)return resg = [1,2]
s = [1,2,3]
# g = [1, 2, 3]
# s = [1, 1]
sol = Solution()
sol.findContentChildren(g, s)
2.钱币找零问题
用最少的纸币来支付同等的金钱。
class Solution:def coinChange_2(self, coins, amount):coins=sorted(coins,reverse=True)print(coins)five_number=0two_number=0one_number=0while amount>=coins[0]:five_number+=1amount-=coins[0]# print('five_number:',five_number)# print(amount)while amount>=coins[1]:two_number+=1amount-=coins[1]# print('two__number:',two_number)# print(amount)while amount>=coins[-1]:one_number+=1amount-=coins[-1]# print('one__number:',one_number)# print(amount)return five_number,two_number,one_number
coins = [1, 2, 5]
amount = 11
sol = Solution()
five_number,two_number,one_number = sol.coinChange_2(coins, amount)
print('five_number:',five_number)
print('two_number:',two_number)
print('one_number:',one_number)
3.区间覆盖
假设我们有 n 个区间,区间的起始端点和结束端点分别是 [l1, r1],[l2, r2],[l3, r3],……,[...
我们从这 n 个区间中选出一部分区间,这部分区间满足两两不相交,端点相交不算,最多有多少区间;
这个问题主要在于右端点选小的,使右边能够有更大的区间覆盖。
4,霍夫曼编码(用于数据压缩)
假设1000个字符,每个字符占一个1个byte,一个byte=8bits,那么存储这1000个就要8000bits,怎么节省呢?
发现这1000个字符只有a,b,c,d,e,f六种不同的字符,所以可以用三个二进制来表示,这样空间就压缩到了3000bits,
根据贪心算法,出现字符频率次数多的,用稍微短的编码,而出现字符频率次数少的,用稍微长的编码,
例题1:
N = int(input())
line = []
for i in range(N):a, b = sorted(list(map(int, input().split(' '))))line.append([a, b])
print(line)# line=[[3, 6], [1, 3], [2, 5]]
line = sorted(line, key=lambda x: x[1])
print('line=', line)ret = [line[0]]
print('ret=', ret)
for item in line[1:]:print('item=', item)if ret[-1][1] > item[0]:passelse:ret.append(item)
print(ret)
print(len(ret))
例题2:假设小偷有一个背包,最多能装20公斤赃物,他闯入一户人家,发现如下表所示的物品。很显然,他不能把所有物品都装进背包,所以必须确定拿走哪些物品,留下哪些物品。
名称 | 价格(美元) | 重量(kg) |
---|---|---|
电脑 | 200 | 20 |
收音机 | 20 | 4 |
钟 | 175 | 10 |
花瓶 | 50 | 2 |
书 | 10 | 1 |
油画 | 90 | 9 |
class Thing(object):"""物品"""def __init__(self, name, price, weight):self.name = nameself.price = priceself.weight = weight@propertydef value(self):"""价格重量比"""return self.price / self.weightdef input_thing():"""输入物品信息"""name_str, price_str, weight_str = input().split()return name_str, int(price_str), int(weight_str)###贪心算法 根据单位价值进行选择
# a 200 20
# b 20 4
# c 175 10
# d 50 2
# e 10 1
# f 90 9
def main():max_weight, num_of_things = map(int, input().split())# max_weight, num_of_things=20,6print('max_weight',max_weight)print('num_of_things',num_of_things)all_things = []for _ in range(num_of_things):all_things.append(Thing(*input_thing()))#根据价值排序all_things.sort(key=lambda x: x.value, reverse=True)print(all_things[0].name)print(all_things[0].price)print(all_things[0].weight)total_weight = 0total_price = 0choice_thing=[]for thing in all_things:if total_weight + thing.weight <= max_weight:total_weight+=thing.weighttotal_price += thing.pricechoice_thing.append(thing)print('总价值=',total_price)print('偷走的物品是')for i in choice_thing:print(i.name,i.price,i.weight)if __name__ == '__main__':main()
二.回溯算法
《蝴蝶效应》,讲的就是主人公为了达到自己的目标,一直通过回溯的方法,回到童年,在关键的岔路口,重新做选择。
背包总的承载重量是 Ckg。现在我们有 n 个物品,每个物品的重量不一样,并且不能分割,选哪几种才能让背包的总重量最大,且背包不会坏。
bestV = 0
curW = 0
curV = 0
bestx = Nonedef backtrack(i):global bestV, curW, curV, x, bestxif i >= n:if bestV < curV:bestV = curVbestx = x[:]else:if curW + w[i] <= c:x[i] = TruecurW += w[i]curV += v[i]backtrack(i + 1)curW -= w[i]curV -= v[i]x[i] = Falsebacktrack(i + 1)if __name__ == '__main__':#实现选择最大价值的物品,且背包不会坏n = 5 #5个物品c = 10 #背包最大承重w = [2, 2, 6, 5, 4] #每个物品重量v = [6, 3, 5, 4, 6] #每个物品价值x = [False for i in range(n)]backtrack(0)print(bestV)print(bestx)
2.电话号码的字母组合
https://leetcode-cn.com/problems/permutations/solution/hui-su-suan-fa-xiang-jie-by-labuladong-2/
class Solution:def backtrace(self, digits, track):if len(digits) == 0:#满足终止条件self.res.append(track)returnfor letter in self.phone[digits[0]]:# for循环去遍历选择条件store = track#保存中间结果用于回溯track += letterself.backtrace(digits[1:], track)track = store#恢复中间结果回溯def letterCombinations(self, digits):self.res = []if len(digits) == 0:return self.resself.phone = {'2': ['a', 'b', 'c'],'3': ['d', 'e', 'f'],'4': ['g', 'h', 'i'],'5': ['j', 'k', 'l'],'6': ['m', 'n', 'o'],'7': ['p', 'q', 'r', 's'],'8': ['t', 'u', 'v'],'9': ['w', 'x', 'y', 'z']}self.backtrace(digits, track='')print('==self.res:', self.res)return self.resdigits = "23"
sol = Solution()
sol.letterCombinations(digits)
3.递归实现全排列:
含有三种解法
def swap(a, p, i):a[p], a[i] = a[i], a[p]return a#取第一个数,剩下的做排序,边界条件是开始索引p==终止索引q
def main(a, p, q):res = []def permute(a, p, q):if p == q:res.append(a.copy())print('res:', res)else:for i in range(p, q, 1):swap(a, p, i)permute(a, p+1, q)print('a:', a.copy())swap(a, p, i)#a还原成原顺序,比如2开头的结束了是2 1 3 需要还原成1 2 3 在吧3放在开头在排序print('==a:', a.copy())permute(a, p, q)print('==res:', res)#
# a = [1]
# a = [1, 2]
a=[1, 2, 3]
main(a, 0, len(a))class Solution:def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""def backtrack(first=0):# 所有数都填完了if first == n:res.append(nums.copy())for i in range(first, n):# 动态维护数组nums[first], nums[i] = nums[i], nums[first]# 继续递归填下一个数backtrack(first + 1)# 撤销操作nums[first], nums[i] = nums[i], nums[first]n = len(nums)res = []backtrack()return resa = [1, 2, 3]
sol = Solution()
res = sol.permute(a)
print('===res:', res)
class Solution:def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""n = len(nums)res = []def backtrack(combination, nums):if len(combination) == n:#往前走的数与最早的数长度想等 就是要的结果之一res.append(combination)print('res', res)return# 递归的结束一定 要有returnfor i in range(len(nums)):#递归回溯print('===nums[i]:', nums[i])backtrack(combination+[nums[i]], nums[:i]+nums[i+1:])backtrack([], nums)return resa = [1, 2]
# a = [1, 2, 3]
sol = Solution()
res = sol.permute(a)
print('===res:', res)
4.n皇后问题
#多皇后问题,同一列 同一行 对角都不能出现同一个皇后
#解法思路:采用回溯算法,可对行进行回溯遍历, 用数组记录列, 对角索引和,与对角索引差,都不在其中,那么就可以往下走
#终止条件:遍历到的行是最后一行 且可以放置
class Solution:def could_place(self, row, col):return not (self.cols_index[col] + self.sub_indexs[row - col] + self.add_indexs[row + col])def place_queen(self, row, col):self.quenes.add((row, col))self.cols_index[col] = 1self.sub_indexs[row - col] = 1self.add_indexs[row + col] = 1def remove_queen(self, row, col):self.quenes.remove((row, col))self.cols_index[col] = 0self.sub_indexs[row - col] = 0self.add_indexs[row + col] = 0def add_res(self):for queue in self.quenes:self.res.append(queue)temp = []for row, col in sorted(self.quenes):temp.append('.'*col + 'Q' + '.' * (self.n - col - 1))self.out.append(temp)def backtrace(self, row):for col in range(self.n):if self.could_place(row, col):self.place_queen(row, col)if (row + 1) == self.n:self.add_res()else:self.backtrace(row + 1)self.remove_queen(row, col)def solveNQueens(self, n: int) -> List[List[str]]:self.n = nself.quenes = set()self.cols_index = [0] * nself.sub_indexs = [0]* (2 * n -1)self.add_indexs = [0]* (2 * n -1)self.res = []self.out = []self.backtrace(row = 0)return self.out
三.动态规划
其是一种空间换时间的算法。
1.递归与动态规划解决最大不相邻数之和
#不相邻最大数 递归解法
def rect_opt(arr,i):if i==0:return arr[i]elif i==1:return max(arr[i-1],arr[i])else:#选自身A=rect_opt(arr,i-2)+arr[i]#不选自身B=rect_opt(arr,i-1)return max(A,B)
arr=[4,1,1,9,1]
arr=[1,2,3,4,5]
res=rect_opt(arr,len(arr)-1)
print('res:',res)#不相邻最大数 DP解法
def dp_opt(arr):opt=[0]*len(arr)opt[0]=arr[0]opt[1]=max(arr[0],arr[1])for i in range(2,len(arr)):opt[i]=max(opt[i-2]+arr[i],opt[i-1])return optarr=[4,1,1,9,1]
arr=[1,2,3,4,5]
opt=dp_opt(arr)
print('opt:',opt)
print('res:',opt[-1])
2.动态规划解决最大公共子串问题
# # 动态规划解决最大公共子串问题
def find_lcsubstr(s1, s2):m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)] # 生成0矩阵,为方便后续计算,比字符串长度多了一列print(m)mmax = 0 # 最长匹配的长度p = 0 # 最长匹配对应在si中的最后一位for i in range(len(s1)):for j in range(len(s2)):if s1[i] == s2[j]:m[i + 1][j + 1] = m[i][j] + 1if m[i + 1][j + 1] > mmax:mmax = m[i + 1][j + 1]p = i + 1print(p)return s1[(p - mmax):p], mmax # 返回最长子串及其长度
3. 动态规划解决最大公共子序列问题
方法1:
import numpy as np
def find_lcseque(s1, s2):# 生成字符串长度加1的0矩阵,m用来保存对应位置匹配的结果m = [[0 for x in range(len(s2) + 1)] for y in range(len(s1) + 1)]print(m)# d用来记录转移方向d = [[None for x in range(len(s2) + 1)] for y in range(len(s1) + 1)]print(d)for i in range(len(s1)):for j in range(len(s2)):if s1[i] == s2[j]: # 字符匹配成功,则该位置的值为左上方的值加1m[i + 1][j + 1] = m[i][j] + 1d[i + 1][j + 1] = 'ok'elif m[i + 1][j] > m[i][j + 1]: # 左值大于上值,则该位置的值为左值,并标记回溯时的方向m[i + 1][j + 1] = m[i + 1][j]d[i + 1][j + 1] = 'left'else: # 上值大于左值,则该位置的值为上值,并标记方向upm[i + 1][j + 1] = m[i][j + 1]d[i + 1][j + 1] = 'up'print(m)print(d)(i, j) = (len(s1), len(s2))print(np.array(d))s = []while m[i][j]: # m[i][j]不为0 说明是存在公共子序列c = d[i][j]if c == 'ok': # 匹配成功,插入该字符,并向左上角找下一个s.append(s1[i - 1])i -= 1j -= 1if c == 'left': # 根据标记,向左找下一个j -= 1if c == 'up': # 根据标记,向上找下一个i -= 1s.reverse()return ''.join(s)res=find_lcseque('vesista', 'vsiss')print(res)
方法2:
import numpy as npclass Solution(object):def longestCommonSubsequence(self, text1, text2):""":type text1: str:type text2: str:rtype: int"""matrix = [[0 for i in range(len(text2) + 1)] for j in range(len(text1) + 1)]# print('==matrix:', matrix)ok_matrix = [[0 for i in range(len(text2) + 1)] for j in range(len(text1) + 1)]res = ''value = 0record_i_j = []for i in range(len(text1)):for j in range(len(text2)):if text1[i] == text2[j]: # 找到相等的字符matrix[i + 1][j + 1] = matrix[i][j] + 1if matrix[i+1][j+1] > value:#递增的地方 才记录value = matrix[i+1][j+1]ok_matrix[i][j] = 1else:matrix[i + 1][j + 1] = max(matrix[i + 1][j], matrix[i][j + 1])print('==matrix:', np.array(matrix))print(np.array(ok_matrix))for i in range(len(ok_matrix)):for j in range(len(ok_matrix[0])):if ok_matrix[i][j] == 1:print('===i,j', i, j)res += text1[i]print('===res:', res)return len(res)sol = Solution()
# text1 = "abcde"
# text2 = "ace"
text1 = "ezupkr"
text2 = "ubmrapg"
# text1 = "bsbininm"
# text2 ="jmjkbkjkv"
# text1 = "abcba"
# text2 = "abcbcba"
# text1 = "oxcpqrsvwf"
# text2 = "shmtulqrypy"
res = sol.longestCommonSubsequence(text1, text2)
只要求长度:
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:n = len(text1)m = len(text2)dp = [[0 for _ in range(m + 1)] for _ in range(n + 1)]for i in range(n):for j in range(m):if text1[i] == text2[j]:dp[i + 1][j + 1] = dp[i][j] + 1else:dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1])return dp[-1][-1]
c++实现:
class Solution {
public:int longestCommonSubsequence(string text1, string text2) {int n = text1.size();int m = text2.size();vector<vector<int> > dp(n + 1, vector<int>(m + 1, 0));for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){if(text1[i] == text2[j]){dp[i+1][j+1] = dp[i][j] + 1;}else{dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);}}}return dp[n][m];}
};
4.求解矩阵最短路径
原始矩阵:
状态转移矩阵:
代码:
import numpy as np
class Solution(object):def minPathSum(self, grid):""":type grid: List[List[int]]:rtype: int"""rows=len(grid)cols=len(grid[0])opt=[[0 for i in range(cols)] for i in range(rows)]# print(np.array(opt))opt[0][0] = grid[0][0]for j in range(1,cols):opt[0][j]=opt[0][j-1]+grid[0][j]# print(np.array(opt))for i in range(1,rows):opt[i][0]=opt[i-1][0]+grid[i][0]# print(np.array(opt))for i in range(1,rows):for j in range(1,cols):opt[i][j]=min(opt[i-1][j]+grid[i][j],opt[i][j-1]+grid[i][j])# print(np.array(opt))return np.array(opt)
grid=[[1,3,1],[1,5,1],[4,2,1]]
sol=Solution()
res=sol.minPathSum(grid)
print('res:')
print(res)
print(res[-1][-1])
结果:
5.子列表元素之和的最大值
解法1.
class Solution(object):def maxSubArray(self, arr):""":type nums: List[int]:rtype: int"""temp = len(arr) * [0]temp[0] = max(arr[0], 0)opt = len(arr)*[0]opt[0]=max(arr[0],0)for i in range(1,len(arr)):temp[i] = max(temp[i - 1]+arr[i], arr[i])opt[i] = max(temp[i],opt[i-1])print('temp:',temp)return optarr=[1, -2, 3, 5, -3, 2]
sol=Solution()
res=sol.maxSubArray(arr)
print('res:',res)
解法2.
class Solution(object):def maxSubArray(self, nums):""":type nums: List[int]:rtype: int"""for i in range(1,len(nums)):nums[i]+=max(nums[i-1],0)return numsa=[1, -2, 3, 5, -3, 2]
sol=Solution()
res=sol.maxSubArray(a)
print('res:',res)
6-1. 01背包问题
(1).复杂解法,空间复杂度为O(N*W)
dp[i][j]:表示第i件物品,重量为j的价值
不选i: dp[i][j] = dp[i-1][j]
选i: dp[i][j] = dp[i-1][j-w[i]]+v[i]
"""
物品的数量,
N = 6
书包能承受的重量,
W = 10
每个物品的重量,
things_w = [2, 2, 3, 1, 5, 2]
每个物品的价值
things_v = [2, 3, 1, 5, 4, 3]
"""
N = 6
W = 10
things_w = [2, 2, 3, 1, 5, 2]
things_v = [2, 3, 1, 5, 4, 3]# import numpy as np
#
def bag_complicate(N, W, things_w, things_v):dp = [[0 for j in range(W + 1)] for i in range(N)]print('==np.array(dp):', np.array(dp))for j in range(W + 1):if j >= things_w[0]:dp[0][j] = things_v[0]print('==np.array(dp):', np.array(dp))for i in range(1, N):for j in range(W + 1):dp[i][j] = dp[i - 1][j] # 不选if j >= things_w[i]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - things_w[i]] + things_v[i])print('==np.array(dp):\n', np.array(dp))return dpdef show(N, W, things_w, value):print('最大价值为:', value[N - 1][W])x = [False for i in range(N)]j = Wfor i in range(N - 1, 0, -1):if value[i][j] > value[i - 1][j]:x[i] = Truej -= things_w[i]print('x', x)# print('背包中所装物品为:')# for i in range(numbers):print('==np.array(dp):', np.array(dp))# if x[i]:# print('第', i+1, '个,', end='')if __name__ == '__main__':dp = bag_complicate(N, W, things_w, things_v)show(N, W, things_w, dp)
(2). 简单解法,空间复杂度为O(W)
思路:
不选i: dp[j] = dp[j]
选i: dp[j] = dp[j-w[i]]+v[i]
要注意的是重量需要逆序遍历,因为如果采用正序的话 dp[j -w[i]]会被之前的操作更新为新值
N = 6
W = 10
things_w = [2, 2, 3, 1, 5, 2]
things_v = [2, 3, 1, 5, 4, 3]def bag_easy(N,W,things_w,things_v):dp = [0 for i in range(W+1)]print('==dp:', dp)for i in range(N):for j in range(W, 0, -1):#记得用一维空间要逆序 防止if j >= things_w[i]:dp[j] = max(dp[j-things_w[i]]+things_v[i], dp[j])print('==dp:', dp)return dpbag_easy(N,W,things_w,things_v)
6-2.完全背包问题
(1)复杂解法
dp[i][j]:表示第i件物品,重量为j的价值
不选i: dp[i][j] = dp[i-1][j]
选i: dp[i][j] = dp[i][j-w[i]]+v[i]
"""
物品的数量,
N = 6
书包能承受的重量,
W = 10
每个物品的重量,
things_w = [2, 2, 3, 1, 5, 2]
每个物品的价值
things_v = [2, 3, 1, 5, 4, 3]
"""
N = 6
W = 10
things_w = [2, 2, 3, 1, 5, 2]
things_v = [2, 3, 1, 5, 4, 3]# import numpy as np
#
def bag_complicate(N, W, things_w, things_v):dp = [[0 for j in range(W + 1)] for i in range(N)]print('==np.array(dp):', np.array(dp))for j in range(W + 1):if j >= things_w[0]:dp[0][j] = things_v[0]print('==np.array(dp):', np.array(dp))for i in range(1, N):for j in range(W + 1):dp[i][j] = dp[i - 1][j] # 不选if j >= things_w[i]:dp[i][j] = max(dp[i - 1][j], dp[i][j - things_w[i]] + things_v[i])print('==np.array(dp):\n', np.array(dp))print('最大价值为:', dp[N - 1][W])return dpif __name__ == '__main__':dp = bag_complicate(N, W, things_w, things_v)
(2)优化解法
def bag_easy(N,W,things_w,things_v):dp = [i for i in range(W+1)]print('==np.array(dp):', np.array(dp))for i in range(N):for j in range(W+1):if j >= things_w[i]:dp[j] = max(dp[j], dp[j-things_w[i]]+things_v[i])else:dp[j] = dp[j]print('==np.array(dp):', np.array(dp))
if __name__ == '__main__':bag_easy(N, W, things_w, things_v)
7.零钱兑换
https://leetcode-cn.com/problems/coin-change/submissions/
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。假设我们取面额为 1 的硬币,那么接下来需要凑齐的总金额变为 11 - 1 = 10
,即 f(11) = f(10) + 1
,这里的 +1
就是我们取出的面额为 1 的硬币。
同理,如果取面额为 2 或面额为 5 的硬币可以得到:
f(11) = f(9) + 1
f(11) = f(6) + 1
所以:
f(11) = min(f(10), f(9), f(6)) + 1
class Solution:def coinChange(self, coins,amount):f = [float("inf")] * (amount + 1)f[0] = 0for i in range(1, amount + 1):for coin in coins:if i - coin >= 0:f[i] = min(f[i], f[i - coin]+1)print(f)return f[-1] if f[-1] != float("inf") else -1coins = [1, 2, 5]
amount = 11
sol=Solution()
res=sol.coinChange(coins,amount)
print('res:')
print(res)
8.乘积最大子序列
乘法与加法最大差别在于,当前元素的符号具有全局性的作用。如果当前元素为负,那么连乘到上个元素的最大乘积,再乘以当前元素,就变成负数,甚至可能成为最小乘积。同样,连乘到上个元素的最小乘积如为负,再乘以当前元素,就变成正数,甚至可能成为最大乘积,所以用两个列表存储当前最大最小值。
class Solution(object):def maxProduct(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)<=1:return Noneopt_min=[0]*len(nums)opt_max = [0] * len(nums)opt_min[0]=nums[0]opt_max[0] = nums[0]for i in range(1,len(nums)):opt_min[i] = min(min(opt_min[i-1]*nums[i],opt_max[i-1]*nums[i]),nums[i])opt_max[i] = max(max(opt_min[i-1]*nums[i],opt_max[i-1]*nums[i]),nums[i])print('opt_min',opt_min)print('opt_max',opt_max)return max(opt_max)nums = [2, 3, -4,4]
# nums =[-2,0,-1]
# nums=[0,2]
# amount = 11
sol=Solution()
res=sol.maxProduct(nums)
print('res:')
print(res)
9.三角形最小路径和
https://leetcode-cn.com/problems/triangle/submissions/
class Solution(object):def minimumTotal(self, triangle):""":type triangle: List[List[int]]:rtype: int"""# res=[]for i in range(1,len(triangle)):for j in range(len(triangle[i])):#边界条件if j == 0:triangle[i][j]=triangle[i-1][j]+triangle[i][j]# 边界条件elif j == i:triangle[i][j] = triangle[i - 1][j-1] + triangle[i][j]else:triangle[i][j] = min(triangle[i - 1][j - 1],triangle[i-1][j]) + triangle[i][j]return min(triangle[-1])triangle =[[2],[3,4],[6,5,7],[4,1,8,3]
]
# nums =[-2,0,-1]
# nums=[0,2]
# amount = 11
sol=Solution()
res=sol.minimumTotal(triangle)
print('res:')
print(res)
10.收益最大--简易
https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/submissions/
前i天的最大收益 = max{前i-1天的最大收益,第i天的价格-前i-1天中的最小价格}
class Solution(object):def maxProfit(self, prices):""":type prices: List[int]:rtype: int"""if len(prices)<=1:return Noneopt=[0]*len(prices)min_p=9999for i in range(len(prices)):#记录第i天之前的最小价min_p = min(min_p, prices[i])opt[i] = max(opt[i-1],prices[i]-min_p)#min(prices[:i]))print(opt)return opt[-1]prices =[1,2]
# nums =[-2,0,-1]
# nums=[0,2]
# amount = 11
sol=Solution()
res=sol.maxProfit(prices)
print('res:')
print(res)
10.收益最大--中级
https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/
# sell[i]表示截至第i天,最后一个操作是卖时的最大收益;
# buy[i]表示截至第i天,最后一个操作是买时的最大收益;
# cool[i]表示截至第i天,最后一个操作是冷冻期时的最大收益;
class Solution(object):def maxProfit(self, prices):""":type prices: List[int]:rtype: int"""if len(prices) == 0:return 0sell = [0]*len(prices)buy = [0] * len(prices)cool = [0] * len(prices)buy[0]-=prices[0]print(buy)for i in range(1,len(prices)):# 第i天卖 第i天不卖sell[i]=max(sell[i-1],buy[i-1]+prices[i])# 第i天不买 第i天买buy[i] = max(buy[i-1],cool[i-1]-prices[i])# 第i天冷 第i天不冷cool[i] = max(sell[i-1],cool[i - 1],buy[i-1])print(buy)print(cool)print(sell)return sell[-1]prices=[1,2,3,0,2]
sol = Solution()
res = sol.maxProfit(prices)
print('res:')
print(res)
11.矩阵走法最多路径
https://leetcode-cn.com/problems/unique-paths/
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
class Solution(object):def uniquePaths(self, m, n):""":type m: int:type n: int:rtype: int"""opt=[[0 for i in range(n)] for j in range(m)]print(opt)for i in range(m):for j in range(n):if i==0 or j==0:opt[i][j]=1else:opt[i][j]=opt[i-1][j]+opt[i][j-1]print(opt)print(opt[-1][-1])return opt[-1][-1]m = 3
n = 2
sol=Solution()
sol.uniquePaths(m,n)
12.一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径
https://leetcode-cn.com/problems/unique-paths-ii/
class Solution(object):def uniquePathsWithObstacles(self, obstacleGrid):""":type obstacleGrid: List[List[int]]:rtype: int"""opt=[[0 for i in range(len(obstacleGrid[0]))] for j in range(len(obstacleGrid))]# print(opt)for i in range(len(obstacleGrid)):for j in range(len(obstacleGrid[0])):#边界条件if obstacleGrid[i][j]==1:opt[i][j]=0else:if i==0 and j==0:opt[i][j]=1elif i==0:opt[i][j]=opt[i][j-1]elif j==0:opt[i][j] = opt[i-1][j]else:opt[i][j]=opt[i-1][j]+opt[i][j-1]# print(opt)return opt[-1][-1]
13.输入: s = "leetcode", wordDict = ["leet", "code"] 输出: true
https://leetcode-cn.com/problems/word-break/
class Solution(object):def wordBreak(self, s, wordDict):""":type s: str:type wordDict: List[str]:rtype: bool"""word_set = {word for word in wordDict}# print(word_set)dp = [False for _ in range(len(s))]dp[0] = s[0] in word_set#第一层循环最外层for i in range(1, len(s)):if s[:i+1] in wordDict:dp[i] = True#内层循环for j in range(i):if dp[j] and s[j+1:i+1] in wordDict:dp[i] = Truebreakprint(dp)return dp[-1]s = "leetcode"
wordDict = ["leet", "code"]
sol=Solution()
res=sol.wordBreak(s,wordDict)
14,最大正方形面积
在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。
https://leetcode-cn.com/problems/maximal-square/
class Solution(object):def maximalSquare(self, matrix):""":type matrix: List[List[str]]:rtype: int"""if not matrix:return 0rows=len(matrix)columns=len(matrix[0])dp=[[0]*columns for i in range(rows)]#边界条件dp[0]=list(map(int,matrix[0]))for i in range(rows):dp[i][0] = int(matrix[i][0])for i in range(1,rows):for j in range(1,columns):#递归条件if matrix[i][j]=="1":dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1res=0for i in range(rows):for j in range(columns):res = max(res,dp[i][j]**2)print('dp:',dp)print(res)return res# matrix=[[1, 0, 1, 0, 0],
# [1, 0, 1, 1, 1],
# [1, 1, 1, 1, 1],
# [1, 0, 0, 1, 0]]
matrix=[["1"]]
sol=Solution()
res=sol.maximalSquare(matrix)
print('res:',res)
15.将列表中相邻的数聚类在一起(动态规划)
1直接相邻就聚,带来的问题是如果值依次增加,会不准(动态规划)
a=[1,2,3,4,56,34,46,100,110,123]
a=sorted(a)
print('a:',a)
opt=[0]*len(a)
for i in range(1,len(a)):if a[i]-a[i-1]<20:opt[i]=1
opt.append(0)
print('opt:',opt)
index=[j for j in range(len(opt)) if opt[j]==0]
print('index:',index)
for k in range(len(index)-1):print(a[index[k]:index[k+1]])
2.优化版,双指针
a = [1, 2, 3, 4, 56, 34, 46, 100, 110, 123]
a = sorted(a)
print('a:', a)
res = []
left, right = 0, 0
while right <len(a):right= left+1while right < len(a) and a[right]-a[left]<20:right+=1res.append([left, right-1])left = rightprint('==res:', res)for i in res:print('==a[i[0]:i[1]]:', a[i[0]:i[1] + 1])
16.打家劫舍简单版 房屋一排
https://leetcode-cn.com/problems/house-robber/
class Solution(object):def rob(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)==0:return 0if len(nums)<=2:return max(nums)opt = [0] * len(nums)opt[0] = nums[0]opt[1] = max(nums[:2])#注意边界条件 从2开始 所以要对 0 1 赋值for i in range(2,len(nums)):opt[i]=max(opt[i-2]+nums[i],opt[i-1])print(opt)return opt[-1]
nums=[1,2,3,1]
sol = Solution()
res = sol.rob(nums)
print('res:')
print(res)
17.打家劫舍中等版 房屋围成圈 所以分为不抢第一家和不抢最后一家两种情况
https://leetcode-cn.com/problems/house-robber-ii/
class Solution(object):def rob(self, nums):""":type nums: List[int]:rtype: int"""if len(nums)==0:return 0if len(nums)<=2:return max(nums)opt1 = [0] * len(nums)opt2 = [0] * len(nums)#不抢第一家opt1[0] = 0opt1[1] = nums[1]#不抢最后一家opt2[0] = nums[0]opt2[1] = max(nums[:2])for i in range(2,len(nums)):opt1[i]=max(opt1[i-2]+nums[i], opt1[i-1])print(opt1)for i in range(2, len(nums)-1):opt2[i] = max(opt2[i - 2] + nums[i], opt2[i - 1])print(opt2)return max(opt1[-1],opt2[-2])
nums=[1,2,3,1]
sol = Solution()
res = sol.rob(nums)
print('res:')
print(res)
18.最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。
利用opt列表来存储在第i个元素之前小于i的最长长度。
class Solution(object):def lengthOfLIS(self, nums):""":type nums: List[int]:rtype: int"""if nums==[]:return 0opt=[0]*len(nums)opt[0]=1for i in range(len(nums)):max_value = 0for j in range(i):#在<i这段内 找出小于nums[i]的数字if nums[i]>nums[j]:max_value=max(max_value,opt[j])opt[i]=max_value+1# print(opt)# print(max_value)return max(opt)
19.编辑距离计算字符之间相似度
编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
mat[i+1,j]+1表示增加操作
d[i,j+1]+1 表示删除操作
d[i,j]+temp表示替换操作,其中temp取0或1
import os
import numpy as np
def edit_distance(S1,S2):#S1列 S2行mat = [[0] *(len(S1)+1) for i in range(len(S2)+1)]# print('mat:', mat)for i in range(len(S2)):mat[i+1][0] = mat[i][0]+1# print('mat:', mat)for i in range(len(S1)):mat[0][i+1] = mat[0][i]+1print('mat:\n', np.array(mat))#相等就为0 不想等加1for i in range(len(S2)):for j in range(len(S1)):if S2[i] == S1[j]:print('S2[i]:', S2[i])mat[i + 1][j + 1] = min(mat[i][j] + 0, mat[i + 1][j]+1, mat[i][j + 1]+1)else:mat[i + 1][j + 1] = min(mat[i][j] + 1, mat[i + 1][j]+1, mat[i][j + 1]+1)print('mat:\n', np.array(mat))dis = mat[-1][-1]print('dis:', dis)return dis
# S1 = 'iva1'
# S2 = 'iva'S2 = '者記聞新'
S1 = '浪(第'
dis = edit_distance(S1, S2)
similarity = 1. - dis/max(len(S1), len(S2))
print('similarity:', similarity)