人工智能+能源:能源行业变革新趋势

640?wx_fmt=jpeg

来源:资本实验室


随着环保压力的不断加大,以及可再生能源成本持续降低等因素,越来越多的国家都开始大力推动从传统化石能源转向可再生能源,全球很多大型企业也纷纷加入了全球可再生能源计划RE100,以实现可再生能源100%的使用。 


除了购买可再生能源外,越来越多的科技公司开始使用人工智能技术来提升能源的使用效率,并取得了非常明显的效果。如2016年,谷歌就使用DeepMind的AI技术对数据中心进行管理,使计算中心服务器等设备的冷却用电减少了40%。


随着人工智能技术与可再生能源的相互融合,能源行业将经历一次前所未有的深度变革。在未来,人工智能将成为智能电网的大脑,通过接入数以百万计的传感器数据,可对电力进行实时分配、分析和决策,使能源分配与使用效率实现最大化。


那么,在此过程中,创业公司可以做什么?在目前,众多创业公司已经开始在这一领域进行布局。从能源项目的设计规划,到日常运营、储能管理,再到天气预报,这些公司已经通过人工智能的应用,推动可再生能源各产业环节的深度变革。


1.Raycatch利用AI优化电厂运营


以色列初创公司Raycatch成立于2015年,用人工智能技术进行太阳能发电厂的管理与运营。公司推出了基于AI的诊断和优化解决方案,可获取并分析太阳能发电厂所有的生产数据,并对日常管理进行优化和指导。


640?wx_fmt=jpeg


公司目前在全球范围内管理了约1GW的光伏项目,覆盖35000逆变器和400万块控制面板,客户包括Enlight、ARAVA POWER、EDF、通用电气等大型公司。


2018年11月,公司获得BayWa re Energy Ventures和DSM Venturing领投的430万美元B轮融资,目前已累计融资730万美元。


2.HST Solar利用AI优化能源项目设计


目前太阳能发电厂的工程设计和规划工作仍然需要人类工程师手工完成,并且需要各种专业的工程师,通常需要几个月才能完成大型商业项目的开发规划。现在,通过借助AI,只需在很短的时间就可以完成同样的设计规划项目。


美国初创公司HST Solar是该领域的一家典型创业公司。公司成立于2013年,专注于太阳能电厂的设计、开发和工程服务。


640?wx_fmt=jpeg


通过该公司的平台,用户输入基本信息后,例如站点位置和有关要安装的设备的详细信息,公司的AI算法将对这些数据进行分析,给出太阳能电厂每个部分的建设方案,并可细化到每个太阳能电池板的特定方向和倾斜角度,以实现能量转化的最大化,同时最大限度地减少强风等其它因素的影响。


据公司称,与人类工程师设计的系统相比,AI设计的太阳能发电场可以将可再生能源的生产成本降低10-20%。


3.Stem利用AI优化储能管理


美国加州初创公司Stem成立于2009年,致力于通过分布式存储技术优化企业能源能耗管理。


640?wx_fmt=jpeg


公司开发的AI平台Athena可以为企业提供自动化实时的能源优化管理服务。该系统会每秒钟获取太阳能发电厂和电网负载数据,并根据电费、天气预报等各种外部数据,分析未来电价的变化走向,进行发送或存储电力,使企业能源存储价值最大化。


据公司称,尽管该系统投入会增加企业20%的成本,但其智能存储解决方案可以节省企业高达30%的能源成本。


今年1月和7月,公司完成两轮1.06亿美元D轮融资,目前已累计融资达3.211亿美元。


4.Nnergix利用AI优化能源项目天气预报


太阳能和风能等可再生能源对天气状况有非常高的依赖度。因此,有效的天气预报是可再生能源生产中不可或缺的重要部分。


西班牙初创公司Nnergix成立于2013年,利用天气数据和机器学习技术进行能源预测。


640?wx_fmt=jpeg


公司开发的Sentinel Weather平台可以访问全球的天气历史数据和天气预报数据,通过机器学习技术预测天气变化对可再生能源产能的影响,可以预测每小时的发电量,从而提升电厂发电效率,并降低运营成本。


目前,公司客户已覆盖20多个国家,已累计融资72万欧元。


5.Energsoft利用AI进行储能设备研发


在可再生能源系统的设计、分析和生产预测过程中,人工智能正在发挥越来越重要的作用。


美国西雅图初创公司Energsoft成立于2018年,公司推出的基于AI驱动的SaaS平台,为制造和使用能源存储设备的公司提供先进的可视化和分析工具。


640?wx_fmt=jpeg


公司的使命是:创新并帮助发现能够以低成本生产和储存可再生能源和清洁能源的新材料。 


该AI平台可追踪并分析数千个电池、超级电容器和储能系统,覆盖从早期研发到现场管理等全流程,可帮助用户找出工业设计的问题,例如材料选择或制造过程,可以降低开发成本,并缩短产品上市的周期。目前公司已筹集17万美元的融资。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用numpy生成各种波

一,生成矩形波 矩形波的傅里叶级数 xnp.linspace(-np.pi,np.pi,201) knp.arange(1,99) k2*k-1 ynp.zeros_like(x) for i in range(len(x)):y[i](4/np.pi)*np.sum(np.sin(k*x[i])/k) # print(t) # print(f) plt.plot(x,y) plt.show() 二,生成锯齿波和三角…

解决TeamViewer访问超时限制的问题

一、卸载TeamViewer:找到安装路径,点击uninstall卸载 二、修改MAC地址 1、查看现有的mac地址:打开cmd界面,输入ipconfig/all 按回车,红框标记为无线局域网mac地址。 2、修改现有无线局域网mac地址 (1)按住…

Linux系统中的load average

1. load average 定义 linux系统中的Load对当前CPU工作量的度量。简单的说是进程队列的长度。 Load Average 就是一段时间 (1 分钟、5分钟、15分钟) 内平均 Load 。 通过系统命令"w"查看当前load average情况 上边0.31,0.30,0.31表示 第一位0.…

工业机器人原来可以这么酷,马斯克和中国美的都对它青睐有加

来源:机器人大讲堂摘要:工业机器人或许是大家认为最枯燥的机器人之一了吧?每次机器人展会上,工业机器人的展位总会备受冷落,硬邦邦的机械臂相比呆萌可爱的服务机器人总是少了那么几分吸引力。但是,我们也不…

100年前没人信他,但他仅1项研究便远程摧毁万架飞机……

来源:世界科技创新论坛摘要:他是爱迪生最强大的对手,也是一个一生独立开发并取得专利700种,合作开发达1000种以上的科学狂人。科学界有一个普遍共识,人类历史上曾经存在过两个公认的旷世天才:达芬奇和尼古拉…

服务器安装opencv报错--libSM.so.6: cannot open shared ...+tensorflow 报错libcusolver.so.8.0: can not...

1.安装opencv出现以下错误: pip install opencv-contrib-python apt-get install -y python-qt4 apt-get install tk-dev python-tk 例如linux.zip.001, linux.zip.002, linux.zip.003... 首先 cat linux.zip* > linux.zip #合并为一个zip包 然后 unzip linu…

AlphaGo之后,DeepMind重磅推出AlphaFold:基因序列预测蛋白质结构

来源:机器之心摘要:Alphabet(谷歌)旗下公司 DeepMind 的人工智能 AlphaGo 曾在国际象棋、围棋等项目中取得了超越人类的表现,其研究不仅震惊世界,也两次登上 Nature。如今,该公司已将人工智能技…

李开复看2019投资趋势:最坏的时代将酝酿最伟大的公司

来源:网易智能摘要:12月3日下午,创新工场在北京举办了2019投资趋势分享会。创新工场创始人、董事长兼CEO李开复,创新工场联合创始人、管理合伙人汪华与创新工场合伙人张鹰对目前中国经济形势和投资趋势做了分析。01最坏的时代将酝…

高斯混合模型做聚类

概述 聚类算法大多数采用相似度来判断,而相似度又大多数采用欧式距离长短来衡量,而GMM采用了新的判断依据—–概率,即通过属于某一类的概率大小来判断最终的归属类别 。 GMM的基本思想就是:任意形状的概率分布都可以用多个高斯分…

基于深度学习的NLP 32页最新进展综述,190篇参考文献

来源:专知摘要:深度学习使用多层学习层次的数据表示,并在许多领域得到了最优的结果。最近,各种各样的模型设计和方法在自然语言处理(NLP)蓬勃发展。在本文中,我们回顾了被广泛应用于各种NLP任务的深度学习相关模型和算法以及它们的发展演变过程。我们还总…

.net framework摘抄与理解

1."源码"编译成"托管模块": 2.将"托管模块"合并成"托管程序集" 3.clr中的"JIT"执行"托管程序集" 第二次执行已被JIT编译成机器码的Console.WriteLine("") 转载于:https://www.cnblogs.com/doujiaomifan…

“新一代人工智能前沿与挑战”国际研讨会专家观点分享

来源:西电人工智能学院摘要:2018年11月25日-26日举办的“新一代人工智能前沿与挑战”中青年论坛暨第二十一届学术周在西安电子科技大学圆满落幕,研讨会上包括长江学者、IEEE Fellow、领域顶尖中青年学者、新锐企业领导者等在内的国内外权威专…

决策树算法及可视化

经典决策树算法包括ID3算法、C4.5算法以及GBDT的基分类器CART算法 ,ID3算法选择特征的依据是信息增益、C4.5是信息增益比,而CART则是Gini指数。 例子: 所谓信息增益就是数据在得到特征X的信息时使得类Y的信息不确定性减少的程度。假设数据集D的信息熵为H(D)&#x…

python多进程并发+pool多线程+共享变量

一.多进程 当计算机运行程序时,就会创建包含代码和状态的进程。这些进程会通过计算机的一个或多个CPU执行。不过,同一时刻每个CPU只会执行一个进程,然后不同进程间快速切换,给我们一种错觉,感觉好像多个程…

高通骁龙855发布,5G大幕拉开,新一轮手机大战在即

来源:网易智能摘要:高通终于公布下一代移动芯片骁龙855。美国时间12月4日,高通在美国夏威夷召开了第三届高通骁龙技术峰会,在峰会首日,骁龙855正式发布。并非外界传言的8150,高通还是沿用了之前的命名规则。…

机器学习的几种方法(knn,逻辑回归,SVM,决策树,随机森林,极限随机树,集成学习,Adaboost,GBDT)

一.判别模式与生成模型基础知识 举例:要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的特征来预测出这只瓜是好瓜的概率,是坏瓜的概率。 举例:利用生成模型是根据好瓜的特…

京东物联网战略大升级|与华为合作,疯狂发布新品,“养鱼”的京东正在物联网赛道上花式秀技术...

来源:物联网智库12月4日下午,在“智联万物 新响无限”2018年京东IoT战略发布会上,京东发布了其IoT领域的最新战略规划,推出了新的品牌“京鱼座”,还推出一系列合作品牌与硬件产品,该战略不仅是对去年5月9日…

电动车的惊世骗局

来源:世界科技创新论坛摘要:新能源是一个很好的机会,技术也没有瓶颈,如果发展对了方向,十年扶持一两个世界领先水平的企业是没问题的。但如果有人趁机“钻空子”,让有限的资源被浪费,怕是很难有…

语义分割中的类别不平衡的权重计算

这是5幅图,加上背景共5类。 可以参考这篇文章https://blog.csdn.net/u012426298/article/details/81232386 对于一个多类别图片数据库,每个类别都会有一个class frequency, 该类别像素数目除以数据库总像素数目, 求出所有class frequency 的median 值&…

盘点百度、阿里、腾讯、华为自动驾驶战略

来源:智车科技摘要:本文中盘点了百度、阿里、腾讯、华为四家巨头的自动驾驶事迹,以及从车路协同、车联网、高精度地图等方面对四家公司进行了梳理。今年阿里9 月云栖大会、华为10 月全联接大会、百度11 月世界大会、腾讯11 月合作伙伴大会可以…