二叉树考点主要有:
1.三种遍历方式,以及构造二叉树等;
2.求深度,最长直径,最长路径,公共祖先等等;
3.合并二叉树,翻转二叉树,判断平衡性,对称性等;
4.从前序与中序构造二叉树,中序与后序构造二叉树,二叉树序列化等;
5.二叉搜索树
1-1.前序遍历
思路1:递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def helper(self, node):if node is not None:self.res.append(node.val)self.helper(node.left)self.helper(node.right)def preorderTraversal(self, root: TreeNode) -> List[int]:self.res = []self.helper(root)return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> res;void help(TreeNode* node){if(node !=nullptr){res.push_back(node->val);help(node->left);help(node->right);}}vector<int> preorderTraversal(TreeNode* root) {help(root);return res;}
};
思路2栈(迭代法):
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def preorderTraversal(self, root: TreeNode) -> List[int]: res = []if root is None:return resstack = [root]while stack:node = stack.pop()if node:res.append(node.val)stack.append(node.right)stack.append(node.left)return res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {vector<int>res;stack<TreeNode*> stack_A;stack_A.push(root);while(stack_A.size()>0){TreeNode* node = stack_A.top();stack_A.pop();if(node){res.push_back(node->val);stack_A.push(node->right);stack_A.push(node->left);}}return res;}
};
1-2.N叉树的前序遍历
1.递归法
"""
# Definition for a Node.
class Node:def __init__(self, val=None, children=None):self.val = valself.children = children
"""class Solution:def preorder(self, root: 'Node') -> List[int]:res = []def helper(node):if node:res.append(node.val)for child in node.children:helper(child)helper(root)# print('res:', res)return res
c++实现:
/*
// Definition for a Node.
class Node {
public:int val;vector<Node*> children;Node() {}Node(int _val) {val = _val;}Node(int _val, vector<Node*> _children) {val = _val;children = _children;}
};
*/class Solution {
public:vector<int> res;void help(Node* node){if(node!=NULL){res.push_back(node->val);vector<Node* > new_nodes = node->children;for(int i=0;i<new_nodes.size();i++){help(new_nodes[i]);}}}vector<int> preorder(Node* root) {help(root);return res;}
};
2.迭代法 利用栈
"""
# Definition for a Node.
class Node:def __init__(self, val=None, children=None):self.val = valself.children = children
"""class Solution:def preorder(self, root: 'Node') -> List[int]: res= []if root is None:return resstack = [root]while stack:node = stack.pop()if node:res.append(node.val)stack.extend(node.children[::-1])# print('==res:', res)return res
c++实现:
/*
// Definition for a Node.
class Node {
public:int val;vector<Node*> children;Node() {}Node(int _val) {val = _val;}Node(int _val, vector<Node*> _children) {val = _val;children = _children;}
};
*/
//后进左子树先出左子树
class Solution {
public:vector<int> preorder(Node* root) {if(root==NULL){return {};}vector<int> res;stack<Node*> stack_A;stack_A.push(root);while (stack_A.size()>0){Node* node = stack_A.top();stack_A.pop();if(node){res.push_back(node->val);vector<Node*> temp_node_list = node->children;for (int i=temp_node_list.size()-1;i>=0;i--){stack_A.push(temp_node_list[i]);}}}return res;}
};
1-3.中序遍历
思路1:递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def helper(self, node):if node is not None:self.helper(node.left)self.res.append(node.val)self.helper(node.right)def inorderTraversal(self, root: TreeNode) -> List[int]:self.res = []self.helper(root)return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int>res;void help(TreeNode* node){if(node){help(node->left);res.push_back(node->val);help(node->right);}}vector<int> inorderTraversal(TreeNode* root) {help(root);return res;}
};
思路2.栈(迭代法)
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def inorderTraversal(self, root):""":type root: TreeNode:rtype: List[int]"""stack = []node = rootoutput = []if root == None: return outputwhile node or stack: # 如果node和aStack都是空的,说明全查完了。while node: # 如果node是空的,说明左边没子节点了。stack.append(node)node = node.leftnode = stack.pop() # 左边没子节点了就输出栈顶的节点值,然后从它右边的子节点继续。output.append(node.val)node = node.rightreturn output
1-4.后序遍历
思路1:递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def helper(self, node):if node:self.helper(node.left)self.helper(node.right)self.res.append(node.val)def postorderTraversal(self, root: TreeNode) -> List[int]:self.res = []self.helper(root)return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> res;void help(TreeNode* node){if(node!=nullptr){help(node->left);help(node->right);res.push_back(node->val);}}vector<int> postorderTraversal(TreeNode* root) {help(root);return res;}
};
思路2:栈(迭代法)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def postorderTraversal(self, root: TreeNode) -> List[int]:stack = []res = []prev = Nonewhile root or stack:while root:stack.append(root)root = root.leftroot = stack.pop()if not root.right or root.right == prev:#右子树为空或者为根节点值已经遍历过 prev已经记录右节点的值res.append(root.val)prev = rootroot = Noneelse:stack.append(root)root = root.rightreturn res
1-5.N叉树的后序遍历
1. 解法1 递归法
#递归法
"""
# Definition for a Node.
class Node:def __init__(self, val=None, children=None):self.val = valself.children = children
"""class Solution:def postorder(self, root: 'Node') -> List[int]:if root is None:return Noneres = []def helper(t):if t is None:returnfor child in t.children:helper(child)res.append(t.val)helper(root)return res
c++实现:
/*
// Definition for a Node.
class Node {
public:int val;vector<Node*> children;Node() {}Node(int _val) {val = _val;}Node(int _val, vector<Node*> _children) {val = _val;children = _children;}
};
*/class Solution {
public:vector<int> res;void help(Node* node){if(node == NULL){return ;}for(int i=0; i < node->children.size(); i++){help(node->children[i]);} res.push_back(node->val); }vector<int> postorder(Node* root) {if (root==NULL){return {};}help(root);return res;}
};
2. 解法2 迭代法
#迭代法
"""
# Definition for a Node.
class Node:def __init__(self, val=None, children=None):self.val = valself.children = children
"""class Solution:def postorder(self, root: 'Node') -> List[int]:if root is None:return Nonestack= [root]res = []while stack:node = stack.pop()res.append(node.val)for child in node.children:stack.append(child)return res[::-1]
1-6.从上到下打印二叉树
1.BFS:思路利用bfs将每一层节点进行存储
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution(object):def levelOrder(self, root):""":type root: TreeNode:rtype: List[int]"""if root is None:return []quene = [root]res = []while quene:node = quene.pop(0)res.append(node.val)if node.left is not None:quene.append(node.left)if node.right is not None:quene.append(node.right)return res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:vector<int> levelOrder(TreeNode* root) {vector<int>res;if(!root){return {};}queue<TreeNode*> queue_A;queue_A.push(root);while(!queue_A.empty()){TreeNode* node = queue_A.front();res.push_back(node->val);queue_A.pop();if(node->left){queue_A.push(node->left);}if(node->right){queue_A.push(node->right);}}return res;}
};
1-7.从上到下打印二叉树 II
思路:从跟节点开始一层一层遍历
1.递归法:要注意的是判断节点是同一层,此时可以传入一个level参数用于控制层数
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def levelOrder(self, root: TreeNode) -> List[List[int]]:res = []def backtrace(t, level):if t:if len(res)==level:res.append([])res[level].append(t.val)backtrace(t.left,level+1)backtrace(t.right,level+1)backtrace(root,0)return res
2.迭代法 BFS
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def levelOrder(self, root: TreeNode) -> List[List[int]]:res = []if not root:return resquene= [root]while quene: temp = []# print('==len(quene):', len(quene))for i in range(len(quene)):node = quene.pop(0)temp.append(node.val) # print('==temp:', temp) if node.left:quene.append(node.left)if node.right: quene.append(node.right)res.append(temp)return res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> res; if(!root){return {};}queue<TreeNode* > queue_A;queue_A.push(root);while(!queue_A.empty()){ vector<int> temp_res;int count = queue_A.size();for (int i=0;i<count;i++){ TreeNode* node = queue_A.front();temp_res.push_back(node->val);queue_A.pop();if(node->left){queue_A.push(node->left);}if(node->right){queue_A.push(node->right);}}res.push_back(temp_res); }return res;}};
1-8.从上到下打印二叉树 III
1.思路BFS :将每一层节点存入队列进行遍历,对奇数层进行逆序加入即可
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution(object):def levelOrder(self, root):""":type root: TreeNode:rtype: List[List[int]]"""if root is None:return []quene = [root]res =[]while quene:temp = []for i in range(len(quene)):node = quene.pop(0)temp.append(node.val)if node.left is not None:quene.append(node.left) if node.right is not None:quene.append(node.right)if len(res)%2==1:res.append(temp[::-1])else:res.append(temp)# print('==res:', res)return res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {vector<vector <int>> res;if (root==NULL){return {};}queue<TreeNode* > queue_A;queue_A.push(root);while(!queue_A.empty()){vector <int> temp_res;int count = queue_A.size();for (int i=0;i<count;i++){TreeNode* node = queue_A.front(); temp_res.push_back(node->val);queue_A.pop();if(node->left){queue_A.push(node->left);}if(node->right){queue_A.push(node->right);}}if(res.size()%2==0){res.push_back(temp_res);}else{reverse(temp_res.begin(),temp_res.end());res.push_back(temp_res);} }return res;}
};
1-9.二叉树的锯齿形层次遍历
思路:将每一层的结果进行保存,最后在奇数层反转即可
1.递归解法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def help(self,node,level):if node:if len(self.res) == level:self.res.append([])self.res[level].append(node.val)self.help(node.left,level+1)self.help(node.right,level+1)def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]:self.res = []if root is None:return self.resself.help(root, 0)for i in range(len(self.res)):if i%2==1:self.res[i] = self.res[i][::-1]return self.res
2.迭代解法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]:res = []if root is None:return resquene = [root]while quene:temp = []for i in range(len(quene)):node = quene.pop(0)temp.append(node.val)if node.left is not None:quene.append(node.left)if node.right is not None:quene.append(node.right)res.append(temp)for i in range(len(res)):if i%2==1:res[i] = res[i][::-1] return res
1-10.递增顺序查找树
思路:中序遍历获取每个节点的值,在利用值构建树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def increasingBST(self, root: TreeNode) -> TreeNode:res= []if root is None:return resdef helper(node):if node:helper(node.left)res.append(node.val)helper(node.right)helper(root)print('res:', res)#构建树new_node = TreeNode(res[0])current_node=new_nodefor i in range(len(res)-1):current_node.left = Nonecurrent_node.right = TreeNode(res[i+1])current_node = current_node.rightreturn new_node
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector <int> res;void help(TreeNode* node){if(node == nullptr){return ;}help(node->left);res.push_back(node->val);help(node->right);}TreeNode* increasingBST(TreeNode* root) {if(root == nullptr){return nullptr;}help(root);TreeNode* new_root = new TreeNode(res[0]);TreeNode* temp_node = new_root;for(int i=1;i<res.size();i++){temp_node->left = nullptr;temp_node->right = new TreeNode(res[i]);temp_node = temp_node->right;}return new_root;}
};
1-11. 二叉树的右视图
思路:每一层进行遍历存储结果,将每一层的右侧结果进行输出即可。
1.迭代法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def rightSideView(self, root: TreeNode) -> List[int]:res = []if root is None:return resqueue = [root]while queue:size = len(queue)for i in range(len(queue)):node = queue.pop(0)if i == size - 1 :res.append(node.val)if node.left is not None:queue.append(node.left)if node.right is not None:queue.append(node.right)return res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> res;vector<int> rightSideView(TreeNode* root) {if(root == nullptr) {return {};}queue<TreeNode*> queue_A(r);queue_A.push(root);while(!queue_A.empty()){int count = queue_A.size();for (int i = 0; i < count; i++){TreeNode* temp_node = queue_A.front();if(i == count - 1){res.push_back(temp_node->val);}queue_A.pop();if(temp_node->left!=nullptr){queue_A.push(temp_node->left);}if(temp_node->right!=nullptr){queue_A.push(temp_node->right);} }}return res;}
};
2.递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def rightSideView(self, root: TreeNode) -> List[int]:res =[]if root is None:return resdef helper(node, level):if node is not None:if len(res) == level:res.append([])res[level].append(node.val)helper(node.left,level+1)helper(node.right,level+1)helper(root, 0)# print('====res:', res)fin_res =[]for i in range(len(res)):fin_res.append(res[i][-1])return fin_res
1-12. 找树左下角的值
思路:bfs
python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def findBottomLeftValue(self, root: TreeNode) -> int:nodes = [root]res = []while nodes:temp = nodes[0]for i in range(len(nodes)):node = nodes.pop(0)if node.left:nodes.append(node.left)if node.right:nodes.append(node.right) if len(nodes) == 0:return temp.val
c++:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode* > nodes;nodes.push(root);while(!nodes.empty()){TreeNode* temp = nodes.front();int count = nodes.size();for(int i = 0; i < count; i++){TreeNode* node = nodes.front();nodes.pop();if(node->left){nodes.push(node->left);}if(node->right){nodes.push(node->right);}}if(nodes.size() == 0){return temp->val;}}return -1;}
};
2-1.二叉树的深度
递归:python代码
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution(object):def maxDepth(self, root):""":type root: TreeNode:rtype: int"""if not root:return 0return max(self.maxDepth(root.left),self.maxDepth(root.right))+1
c++代码:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:int maxDepth(TreeNode* root) {if(root==NULL){return 0;}return max(maxDepth(root->left),maxDepth(root->right))+1;}
};
2-2:二叉树的最小深度
思路;求的就是根节点到叶子节点的最小值
python代码:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def minDepth(self, root: TreeNode) -> int:if root is None:return 0if root.left and root.right:return min(self.minDepth(root.left),self.minDepth(root.right))+1elif root.left:return self.minDepth(root.left)+1else:return self.minDepth(root.right)+1
c++代码:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int minDepth(TreeNode* root) {if (root == nullptr){return 0;}if(root->left && root->right){return min(minDepth(root->left),minDepth(root->right))+1;}else if(root->left){return minDepth(root->left)+1;}else{return minDepth(root->right)+1;}}
};
2-3.二叉树的直径
思路:递归函数用来获取每一层深度,然后在分别对左右子树深度求和,这里要注意的是最长直径不一定过根节点,所有要用一个变量存储遍历每个节点时的最大直径.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def get_depth(self, node):if node is None:return 0l = self.get_depth(node.left)r = self.get_depth(node.right)self.max_value = max(self.max_value, l+r)return max(l,r)+1def diameterOfBinaryTree(self, root: TreeNode) -> int:self.max_value = 0if root is None:return 0self.get_depth(root)return self.max_value
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:int max_value=0;int help(TreeNode* node){if(!node){return 0;}int l = help(node->left);int r = help(node->right);max_value = max(max_value, l+r);return max(l,r)+1;}int diameterOfBinaryTree(TreeNode* root) {help(root);return max_value;}
};
2-4.二叉树中的最大路径和
递归 主要是要找准递归终止条件和递归出口,终止条件就是节点为none自然返回值为0, 递归出口就是节点本身值+max(左节点增益值,右节点增益值)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def helper(self, node):if node is None:return 0left_gain = self.helper(node.left)right_gain = self.helper(node.right)self.max_gain = max(self.max_gain,left_gain+right_gain+node.val)return max(node.val+left_gain,node.val+right_gain,0)def maxPathSum(self, root: TreeNode) -> int:self.max_gain = float('-inf')self.helper(root)return self.max_gain
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int max_value=INT_MIN;int helper(TreeNode *node){if(!node){return 0;}int left_gain = helper(node->left);int right_gain = helper(node->right);max_value = max(max_value, node->val+left_gain+right_gain);return max(max(node->val+left_gain,0),node->val+right_gain);}int maxPathSum(TreeNode* root) {helper(root);return max_value;}
};
2-5.路径总和
1.递归法
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution(object):def hasPathSum(self, root, sum):""":type root: TreeNode:type sum: int:rtype: bool"""if not root:return Falseif not root.left and not root.right and root.val==sum:return Truesum -=root.valreturn self.hasPathSum(root.left,sum) or self.hasPathSum(root.right,sum)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool hasPathSum(TreeNode* root, int targetSum) {if(root == nullptr){return false;}if (root->left == nullptr && root->right == nullptr && targetSum==root->val){return true;}targetSum -=root->val;return hasPathSum(root->left,targetSum) || hasPathSum(root->right,targetSum);}
};
2.利用栈--DFS
class Solution(object):def hasPathSum(self, root, sum):""":type root: TreeNode:type sum: int:rtype: bool"""# # #递归终止条件 # if root is None:# return False# if root.left is None and root.right is None and root.val == sum:# return True# sum = sum - root.val# # print('===sum:', sum)# return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) if not root:return Falsequene = [(root, root.val)]while quene:node,value = quene.pop()if node.left is None and node.right is None and value==sum:return Trueif node.left is not None:quene.append((node.left,value+node.left.val))if node.right is not None:quene.append((node.right,value+node.right.val)) # print('==quene:',quene)return False
3.利用队列--BFS
class Solution(object):def hasPathSum(self, root, sum):""":type root: TreeNode:type sum: int:rtype: bool"""# # #递归终止条件 # if root is None:# return False# if root.left is None and root.right is None and root.val == sum:# return True# sum = sum - root.val# # print('===sum:', sum)# return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) if not root:return Falsequene = [(root, root.val)]while quene:node,value = quene.pop(0)if node.left is None and node.right is None and value==sum:return Trueif node.left is not None:quene.append((node.left,value+node.left.val))if node.right is not None:quene.append((node.right,value+node.right.val)) # print('==quene:',quene)return False
2-6:路径总和 II
思路:回溯 这种里面要调用两层回溯的 track就不要放在递归函数里面了
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def dfs(self, node, sum_):if node is None:return 0store = self.track.copy()self.track.append(node.val)# print('==self.track:', self.track)if node.left is None and node.right is None and sum_==node.val: self.res.append(self.track)sum_ -= node.valself.dfs(node.left, sum_)self.dfs(node.right, sum_)# self.track.pop()self.track = storedef pathSum(self, root: TreeNode, sum: int) -> List[List[int]]:self.res = []self.track = []self.dfs(root, sum)return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<vector<int>> res;vector<int> track;void dfs(TreeNode* root, int targetSum){if(root==nullptr){return ;}vector<int> store;store = track;track.push_back(root->val); if(root->left==nullptr && root->right==nullptr && targetSum==root->val){res.push_back(track);}targetSum -= root->val;dfs(root->left, targetSum);dfs(root->right, targetSum);track = store;}vector<vector<int>> pathSum(TreeNode* root, int targetSum) {dfs(root, targetSum);return res;}
};
2-7:路径总和 III
思路:用一个列表存储从节点开始的数字和
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
#用列表记录从每一个节点开始的和
class Solution:def dfs(self, node, sum_list, sum):if node is None:return 0 sum_list = [num+node.val for num in sum_list]sum_list.append(node.val)for num in sum_list:if num==sum:self.res+=1self.dfs(node.left, sum_list, sum)self.dfs(node.right, sum_list, sum)def pathSum(self, root: TreeNode, sum: int) -> int:self.res = 0self.dfs(root, [], sum)return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int res;void dfs(TreeNode* node, vector<int> num_list, int sum){if(node == nullptr){return ;}for (int i=0; i<num_list.size(); i++){num_list[i] += node->val;} num_list.push_back(node->val);for(int i=0; i<num_list.size(); i++){if(num_list[i]==sum){res++;}}dfs(node->left, num_list, sum);dfs(node->right, num_list, sum);}int pathSum(TreeNode* root, int sum) {vector<int> num_list;dfs(root, num_list, sum);return res;}
};
2-8.二叉树的所有路径
给定一个二叉树,返回所有从根节点到叶子节点的路径
思路:dfs
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def dfs(self, node,path):if not node:returnpath +=str(node.val)if node.left is None and node.right is None:self.res.append(path)else:path+="->"self.dfs(node.left, path)self.dfs(node.right, path)def binaryTreePaths(self, root: TreeNode) -> List[str]:self.res = []self.dfs(root, "")return self.res
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<string> res;void dfs(TreeNode* node, string path){if(node == nullptr){return ;}path+=to_string(node->val);if(node->left == nullptr && node->right == nullptr){res.push_back(path);}else{path+="->";dfs(node->left, path);dfs(node->right, path);}}vector<string> binaryTreePaths(TreeNode* root) {dfs(root, "");return res;}
};
2-9.求根节点到叶节点数字之和
python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def help(self, node, path):if node is None:returnpath += str(node.val)if node.left is None and node.right is None:self.res.append(path)else: self.help(node.left, path)self.help(node.right, path)def sumNumbers(self, root: TreeNode) -> int:self.res = []self.help(root, '')return sum(map(int, self.res))
c++代码:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<string> res;void help(TreeNode* node, string path){if(node == nullptr){return ;}path += to_string(node->val);if(node->left == nullptr && node->right == nullptr){res.push_back(path);}else{help(node->left, path);help(node->right, path);}}int sumNumbers(TreeNode* root) {help(root, "");int int_res;for(auto str_:res){int_res += atoi(str_.c_str());}return int_res;}
};
3-1.合并二叉树
思路:采用前序遍历访问二叉树,如果节点其一为none,就返回另一个
1.递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:if t1 is None:return t2if t2 is None:return t1t1.val+=t2.valt1.left = self.mergeTrees(t1.left,t2.left)t1.right = self.mergeTrees(t1.right,t2.right)return t1
2.迭代法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:if t1 is None:return t2stack= [(t1,t2)]while stack:t = stack.pop()if t[0] is None or t[1] is None:continuet[0].val +=t[1].valif t[0].left is None:t[0].left = t[1].leftelse:stack.append((t[0].left, t[1].left))if t[0].right is None:t[0].right = t[1].rightelse:stack.append((t[0].right, t[1].right))return t1
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {if(root1 == nullptr){return root2;}if(root2 == nullptr){return root1;}root1->val += root2->val;root1->left = mergeTrees(root1->left, root2->left);root1->right = mergeTrees(root1->right, root2->right);return root1;}
};
3-2:翻转二叉树
思路:递归遍历左右子树进行交换即可
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def invertTree(self, root: TreeNode) -> TreeNode:if root is None:return Noneleft = self.invertTree(root.left)right = self.invertTree(root.right)root.left = rightroot.right = leftreturn root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* invertTree(TreeNode* root) {if(root == nullptr){return nullptr;}TreeNode* left = invertTree(root->left);TreeNode* right = invertTree(root->right);root->left = right;root->right = left;return root;}
};
3-3.检查二叉树平衡性
思路:递归求解节点左右分支的最长路径,如果路径之差绝对值大于1,就认为是非平衡。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def depth(self, node):if node is None:return 0return max(self.depth(node.left), self.depth(node.right)) + 1def isBalanced(self, root: TreeNode) -> bool:if root is None:return Trueif abs(self.depth(root.left) - self.depth(root.right)) > 1:return Falsereturn self.isBalanced(root.left) and self.isBalanced(root.right)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:int get_height(TreeNode* node){if(node == NULL){return 0;}return max(get_height(node->left), get_height(node->right))+1;}bool isBalanced(TreeNode* root) {if(root == NULL){return true;}int left_value = get_height(root->left);int right_value = get_height(root->right);// cout<<left_value<<endl;// cout<<right_value<<endl;if(abs(left_value-right_value)>1){return false;}return isBalanced(root->left) && isBalanced(root->right);}
};
3-4.对称二叉树
1.解法1 bfs 对每个节点的左子树和右子树进行判断相等
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def isSymmetric(self, root: TreeNode) -> bool:def check(t1,t2):if t1==None and t2==None:return Trueif t1==None or t2==None:return Falseif (t1.val != t2.val):return Falsereturn check(t1.left,t2.right) and check(t1.right,t2.left)return check(root,root)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool dfs(TreeNode* t1, TreeNode* t2){if(t1==nullptr && t2==nullptr){return true;}if(t1==nullptr || t2==nullptr){return false;}return dfs(t1->left,t2->right) && dfs(t1->right,t2->left);}bool isSymmetric(TreeNode* root) {return dfs(root, root);}
};
2.解法2 dfs ,首先对根节点左子树进行前序遍历并存储值,对根节点右子树的右分支进行遍历在对左分支进行遍历并存储值,最后比较两个列表的值。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def isSymmetric(self, root: TreeNode) -> bool:if root==None:return Truedef leftsearch(t1, left):if t1==None:left.append(None)else:left.append(t1.val)leftsearch(t1.left,left)leftsearch(t1.right,left)def rightsearch(t2, right):if t2==None:right.append(None)else:right.append(t2.val)rightsearch(t2.right,right)rightsearch(t2.left,right)left = []right = []leftsearch(root.left, left)rightsearch(root.right, right)if left==right:return Trueelse:return False
3-5.相同的树
思路:判断节点 相等 判断节点的值相等 在递归左右子树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:if not p and not q:#两个节点都为空return Trueif (not p and q) or (not q and p):#两个节点只要有一个不为空return Falseif p.val != q.val:return Falsereturn self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool isSameTree(TreeNode* p, TreeNode* q) {if(p==nullptr && q==nullptr){return true;}if(p==nullptr || q==nullptr){return false;}if(p->val != q->val){return false;}return isSameTree(p->left,q->left) && isSameTree(p->right,q->right);}
};
3-6.左叶子之和
思路:判断左叶子的条件:节点的左指针不为none,同时节点的左指针的左指针和节点的左指针的右指针为none
1.递归写法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def sumOfLeftLeaves(self, root: TreeNode) -> int:self.result = 0 def get_res(t):if t is None:return 0 if t is not None and t.left is not None and t.left.left is None and t.left.right is None:self.result = self.result + t.left.val get_res(t.left)get_res(t.right)get_res(root)return self.result
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:int res;void help(TreeNode* node){if(node == NULL){return ;}if(node->left !=NULL && node->left->left ==NULL && node->left->right ==NULL){res+=node->left->val;}help(node->left);help(node->right);}int sumOfLeftLeaves(TreeNode* root) {if(root == NULL){return 0;}help(root);return res;}
};
2.迭代写法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def sumOfLeftLeaves(self, root: TreeNode) -> int:if root is None:return 0 stack = [root]res = 0while stack:node = stack.pop()if node is not None:if node.left is not None and node.left.left is None and node.left.right is None:res += node.left.valstack.append(node.left)stack.append(node.right)return res
4-1.从前序与中序遍历序列构造二叉树
思路:
终止条件:前序或中序数组为空.
根据前序数组第一个元素,拼出根节点,再将前序数组和中序数组分成两半,递归的处理前序数组左边和中序数组左边,递归的处理前序数组右边和中序数组右边。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: # 递归终止条件 前序遍历节点数或中序遍历节点数为0if len(preorder)==0 or len(inorder)==0:return Noneroot = TreeNode(preorder[0])#根据前序遍历特点创建根节点#再根据中序遍历特点用根节点找出左右子树的分界点mid_index = inorder.index(preorder[0])#再利用中序遍历和前序遍历的左子树节点个数相等特点 构造根节点左子树root.left = self.buildTree(preorder[1:mid_index+1],inorder[:mid_index])#再利用中序遍历和前序遍历的右子树节点个数相等特点 构造根节点右子树root.right = self.buildTree(preorder[mid_index+1:],inorder[mid_index+1:])return root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if(preorder.empty() || preorder.empty()) {return nullptr;}TreeNode* root = new TreeNode(preorder[0]);int root_value = preorder[0];int middle = 0;for (int i=0;i<inorder.size();i++){if(inorder[i]==root_value){middle = i;break;}}vector<int> leftInorder(inorder.begin(), inorder.begin() + middle);vector<int> rightInorder(inorder.begin() + middle + 1, inorder.end());vector<int> leftPreorder(preorder.begin()+1, preorder.begin() + middle+1);vector<int> rightPreorder(preorder.begin() + middle + 1, preorder.end());root->left = buildTree(leftPreorder,leftInorder);root->right = buildTree(rightPreorder,rightInorder);return root;}
};
4-2.从中序与后序遍历序列构造二叉树
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if(inorder.empty() || postorder.empty()){return nullptr;}TreeNode* root = new TreeNode(postorder[postorder.size()-1]);int root_value = postorder[postorder.size()-1];int middle = 0;for (int i=0; i<inorder.size(); i++){if(inorder[i] == root_value){middle = i;break;}}// cout<<"===middle:"<<middle<<endl;vector<int> left_inorder(inorder.begin(), inorder.begin() + middle);vector<int> right_inorder(inorder.begin() + middle + 1, inorder.end());vector<int> left_postorder(postorder.begin(), postorder.begin() + middle);vector<int> right_postorder(postorder.begin() + middle, postorder.end() - 1);root->left = buildTree(left_inorder, left_postorder);root->right = buildTree(right_inorder, right_postorder);return root;}
};
思路:和上一题类似
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:#递归终止条件if len(inorder)==0 or len(postorder)==0:return None#创建根节点root = TreeNode(postorder[-1])#根据中序遍历获取分离点mid_index = inorder.index(postorder[-1])# print('==mid_index:',mid_index)#获取左子树root.left = self.buildTree(inorder[:mid_index],postorder[:mid_index])#获取右子树root.right = self.buildTree(inorder[mid_index+1:],postorder[mid_index:-1])return root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if(inorder.empty() || postorder.empty()){return nullptr;}TreeNode* root = new TreeNode(postorder[postorder.size()-1]);int root_value = postorder[postorder.size()-1];int middle = 0;for (int i=0; i<inorder.size(); i++){if(inorder[i] == root_value){middle = i;break;}}// cout<<"===middle:"<<middle<<endl;vector<int> left_inorder(inorder.begin(), inorder.begin() + middle);vector<int> right_inorder(inorder.begin() + middle + 1, inorder.end());vector<int> left_postorder(postorder.begin(), postorder.begin() + middle);vector<int> right_postorder(postorder.begin() + middle, postorder.end() - 1);root->left = buildTree(left_inorder, left_postorder);root->right = buildTree(right_inorder, right_postorder);return root;}
};
由上面两题可知对于前序遍历:跟左右,中序遍历:左跟右,后序遍历左右跟;
采前序遍历和中序遍历,中序遍历和后序遍历都能通过根节点分离出左右,而前序遍历和后序遍历就不能,故而后者无法恢复出二叉树.
4-3.二叉树的序列化与反序列化
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Codec:def serialize(self, root):"""Encodes a tree to a single string.:type root: TreeNode:rtype: str"""# return self.pre_order(root)# self.in_order(root)from collections import dequeres = []queue= [root]#deque([root])while queue:root = queue.pop(0)#left()if root:res.append(root.val)queue.extend([root.left, root.right])else:res.append('#')return str(res)def deserialize(self, data):"""Decodes your encoded data to tree.:type data: str:rtype: TreeNode"""# print(self.pre_rest, self.in_res)print(data)nodes = [(TreeNode(v) if v != '#' else None) for v in eval(data)]i, j, n = 0, 1, len(nodes)while j < n:if nodes[i]:nodes[i].left = nodes[j]j += 1nodes[i].right = nodes[j]j += 1i += 1return nodes[0] # Your Codec object will be instantiated and called as such:
# ser = Codec()
# deser = Codec()
# ans = deser.deserialize(ser.serialize(root))
5-1.二叉搜索树的最近公共祖先
思路:
1.从根节点开始遍历树
2.如果节点 p 和节点 q 都在右子树上,那么以右孩子为根节点继续 1 的操作
3.如果节点 p 和节点 q 都在左子树上,那么以左孩子为根节点继续 1 的操作
4.如果条件 2 和条件 3 都不成立,这就意味着我们已经找到p 和q 的公共祖先了
解法1:当成普通二叉树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':if root==p or root==q or root is None:return rootleft_node = self.lowestCommonAncestor(root.left,p,q)right_node = self.lowestCommonAncestor(root.right,p,q)if left_node is None:return right_nodeif right_node is None:return left_nodereturn root
解法2利用二叉搜索树特点根节点值和左右子树值大小的特点.递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
#利用二叉搜索树的特点
class Solution:def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':print('==root.val:', root.val)if root.val< min(p.val, q.val):#都大于根节点的值 将右孩子作为根节点return self.lowestCommonAncestor(root.right, p, q)elif root.val > max(p.val, q.val):#都小于根节点的值 将左孩子作为根节点return self.lowestCommonAncestor(root.left, p, q)else:#找到公共祖先return root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if(root->val<min(p->val,q->val)){return lowestCommonAncestor(root->right,p,q);}if(root->val>max(p->val,q->val)){return lowestCommonAncestor(root->left,p,q);}return root;}
};
解法3.迭代法
#利用二叉搜索树的特点
class Solution:def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':node = rootwhile node:if node.val < min(p.val,q.val):node = node.rightelif node.val > max(p.val,q.val):node = node.leftelse:return node
5-2:二叉树的最近公共祖先
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':if root is None or root==p or root==q:#递归终止条件 节点为空 或者节点等于p,q其中之一return rootleft = self.lowestCommonAncestor(root.left, p, q)#遍历左子树right = self.lowestCommonAncestor(root.right, p, q)#遍历右子树if left is None:#左子树为空 就去右子树 return rightif right is None:#右子树为空 就去左子树 return leftreturn root#左右子树都不为空 说明找到了节点
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root == NULL){return NULL;}if(root->val == p->val || root->val == q->val){return root;}TreeNode* left_node = lowestCommonAncestor(root->left,p,q);TreeNode* right_node = lowestCommonAncestor(root->right,p,q);if(left_node !=NULL && right_node!=NULL){return root;}if (left_node==NULL){return right_node;}return left_node;}
};
5-3.二叉搜索树中的搜索
思路:利用二叉树特点
1.从根节点遍历二叉树
2.如果给定值小于跟节点值,根节点替换为右孩子节点,否则根节点替换为左孩子节点
1.递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
#递归法
class Solution:def searchBST(self, root: TreeNode, val: int) -> TreeNode:if not root or root.val ==val:#截止条件return rootif root.val < val:return self.searchBST(root.right,val)else:return self.searchBST(root.left,val)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {if(root == nullptr){return root;}if(root->val == val){return root;}if(root->val > val){return searchBST(root->left,val);}else{return searchBST(root->right,val);}}
};
2.迭代法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
#迭代法
class Solution:def searchBST(self, root: TreeNode, val: int) -> TreeNode:while root is not None and root.val !=val:root = root.left if root.val >val else root.rightreturn root
5-4.把二叉搜索树转换为累加树
思路:其实就是逆中序遍历,利用二叉搜索树的特点,跟节点值更新为右孩子和根节点值之和,左孩子值更新为根节点与左孩子值之和。
1.迭代法:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def convertBST(self, root: TreeNode) -> TreeNode:stack = []node = rootvalue = 0while stack or node:while node:#把跟节点与右子树节点依次压进栈 实现逆中序遍历stack.append(node)node = node.rightprint('==stack:', stack)node = stack.pop()print('==node:',node)value += node.valnode.val = valueprint('==node.left:', node.left)node = node.leftreturn root
2.递归法:
其中res存储逆中序遍历(右根左)的值,便于查看
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:def helper(self, node):if node:self.helper(node.right)# self.res.append(node.val)self.value+=node.valnode.val = self.valueself.helper(node.left)def convertBST(self, root: TreeNode) -> TreeNode:# self.res =[]self.value = 0self.helper(root)return root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int res = 0;void help(TreeNode* node){if(node == nullptr){return ;}help(node->right);res += node->val;node->val = res;help(node->left);}TreeNode* convertBST(TreeNode* root) {help(root);return root;}
};
5-5.删除二叉搜索树中的节点
#思路:中序遍历,如果值大于节点值,则去右子树,否则去左子树
#如果 找的的节点是叶子节点,则进行删除置None即可
#如果找到的节点不是叶子节点,有右子树,则用后继节点(比当前节点值大的最小值)代替找到的节点,在将后继节点置None
#如果找到的节点不是叶子节点,有左子树,则用前驱节点(比当前节点值小的最大值)代替找到的节点,在将前驱节点置None
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution:#获取节点的后继节点(比当前节点大的最小值)def get_successor(self, node):node = node.rightwhile node.left:node = node.leftreturn node.val#获取节点的前驱节点(比当前节点小的最大值)def get_pressor(self, node):node = node.leftwhile node.right:node = node.rightreturn node.valdef deleteNode(self, root: TreeNode, key: int) -> TreeNode:if root is None:return Noneif root.val<key:root.right = self.deleteNode(root.right, key)elif root.val>key:root.left = self.deleteNode(root.left, key)else:if root.left is None and root.right is None:#叶子节点root = None elif root.right:#要删除的节点有右子树 利用后继节点root.val = self.get_successor(root)root.right = self.deleteNode(root.right,root.val)#删除后继节点else:#要删除的节点有左子树 利用前驱节点root.val = self.get_pressor(root)root.left = self.deleteNode(root.left,root.val)#删除前驱节点 return root
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int get_succesor(TreeNode* node){//得到后继节点node = node->right;while(node->left != nullptr){node = node->left;}return node->val;}int get_pressor(TreeNode* node){node = node->left;while(node->right != nullptr){node = node->right;}return node->val;}TreeNode* deleteNode(TreeNode* root, int key) {if(root == nullptr){return nullptr;}if(root->val < key){root->right= deleteNode(root->right, key);}else if(root->val >key){root->left= deleteNode(root->left, key);}else{if(root->left == nullptr && root->right == nullptr){root = nullptr;}else if(root->right != nullptr){root->val = get_succesor(root);root->right = deleteNode(root->right, root->val);}else{root->val = get_pressor(root);root->left = deleteNode(root->left, root->val);}}return root;}
};
5-6.不同的二叉搜索树
思路:卡塔兰数
将 1⋯(i−1) 序列作为左子树,将 (i+1)⋯n 序列作为右子树。接着我们可以按照同样的方式递归构建左子树和右子树。
在上述构建的过程中,由于根的值不同,因此我们能保证每棵二叉搜索树是唯一的.也就得到卡塔兰数
class Solution(object):def numTrees(self, n):""":type n: int:rtype: int"""#状态方程 和G(j-1) * G(n-j)dp = [0]*(n+1)#0 1树都为1dp[0], dp[1] = 1, 1for i in range(2,n+1):for j in range(1,i+1):dp[i] += dp[j-1]*dp[i-j]# print('==dp:', dp)return dp[-1]
c++实现:
class Solution {
public:int numTrees(int n) {vector<int> res(n+1,0); res[0] = 1;res[1] = 1;for (int i=2;i<n+1;i++){for (int j=1;j<i+1;j++){res[i] += res[j-1] * res[i-j];}}return res[n];}
};
5-7.不同的二叉搜索树 II
思路:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):def generateTrees(self, n):""":type n: int:rtype: List[TreeNode]"""if n==0:return []def build_tree(left,right):if left > right:#递归终止条件 如果左边计数大于右边 说明要返回空值return [None]all_trees = []for i in range(left, right+1):left_trees = build_tree(left, i-1)right_trees = build_tree(i+1, right)for l in left_trees:#遍历可能的左子树for r in right_trees:#遍历可能的右子树cur_tree = TreeNode(i)#根节点cur_tree.left= lcur_tree.right = rall_trees.append(cur_tree)return all_treesres = build_tree(1,n)return res
5.8.验证二叉搜索树
思路1:递归处理右子树节点和 左子树节点的值和上下界限的大小
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = Noneclass Solution(object):def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""def helper(node, lower=float('-inf'), upper=float('inf')):if node is None:#递归终止条件 节点为Nonereturn Trueval = node.val#获取节点值#如果节点值大于上界或者小于下界 ,返回falseif val >= upper or val <= lower :return False#递归右子树 对于右子树 具备下界if not helper(node.right, val, upper):return False#递归左子树 对于左子树 具备上界if not helper(node.left, lower, val):return Falsereturn Truereturn helper(root)
c++实现:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:bool help(TreeNode* node, long long lower,long long upper){if(node == nullptr){return true;}if(node->val <= lower || node->val >= upper){return false;}if(!help(node->right, node->val, upper)){return false;}if(!help(node->left, lower, node->val)){return false;}return true;}bool isValidBST(TreeNode* root) {if(root == nullptr){return true;}return help(root, LONG_MIN, LONG_MAX);}
};
思路2 :利用中序遍历的特点,遍历左子树和根节点,如果值不满足二叉搜索数特点就返回false.
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):def isValidBST(self, root):stack = []node = rootinorder_value = float('-inf')while stack or node:#出栈终止条件while node:#进栈stack.append(node)node = node.leftnode = stack.pop()#左节点# 如果中序遍历得到的节点的值小于等于前一个 inorder_value,说明不是二叉搜索树if node.val <=inorder_value:return Falseinorder_value = node.val node=node.rightreturn True
思路3:递归实现中序遍历 左 跟 右 也就是遍历的后一个节点值要大于上一个 否则不满足二叉搜索树特点
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
#中序遍历 左跟右
class Solution:def __init__(self):self.pre = float('-inf')def isValidBST(self, root: TreeNode) -> bool:if root is None:return Trueif not self.isValidBST(root.left):#先访问左子树return Falseif root.val<=self.pre:#在访问当前节点return False;print('==before self.pre:',self.pre)self.pre = root.valprint('==after self.pre:',self.pre)return self.isValidBST(root.right)#在访问右子树
5.9将有序数组转换为二叉搜索树
思路:二分法
python代码
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def help(self, left, right):if left > right:return Nonemid = left + (right - left) // 2root = TreeNode(self.nums[mid])root.left = self.help(left, mid - 1)root.right = self.help(mid + 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) -> TreeNode: self.nums = numsreturn self.help(0, len(nums) - 1)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def help(self, left, right):if left > right:return Nonemid = left + (right - left) // 2root = TreeNode(self.nums[mid])root.left = self.help(left, mid - 1)root.right = self.help(mid + 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) -> TreeNode: self.nums = numsreturn self.help(0, len(nums) - 1)