世界人工智能发展究竟到了什么水平

来源:第一财经

关于人工智能在当今科技界的发展水平,学术界、产业界和媒体界可能会有不同的看法。我经常听到的一个说法是:现在基于大数据与深度学习的人工智能是一种完全新颖的技术形态,它的出现能够全面地改变未来人类的社会形态,因为它能够自主进行“学习”,由此大量取代人类劳力。

我认为这里有两个误解:第一,深度学习并不是新技术;第二,深度学习技术所涉及的“学习”与人类的学习并不是一回事,因为它不能真正“深度”地理解它所面对的信息。

深度学习不是新技术

从技术史角度看,深度学习技术的前身,其实就是在20世纪80年代就已经热闹过一阵子的“人工神经元网络”技术(也叫“连接主义”技术)。

该技术的实质,是用数学建模的办法建造出一个简易的人工神经元网络结构,而一个典型的此类结构一般包括三层:输入单元层、中间单元层与输出单元层。输入单元层从外界获得信息之后,根据每个单元内置的汇聚算法与激发函数,“决定”是否要向中间单元层发送进一步的数据信息,其过程正如人类神经元在接收别的神经元送来的电脉冲之后,能根据自身细胞核内电势位的变化来“决定”是否要向另外的神经元递送电脉冲。

需要注意的是,无论整个系统所执行的整体任务是关于图像识别还是自然语言处理,仅仅从系统中单个计算单元自身的运作状态出发,观察者是无从知道相关整体任务的性质的。毋宁说,整个系统其实是以“化整为零”的方式,将宏观层面上的识别任务分解为了系统组成构件之间的微观信息传递活动,并通过这些微观信息传递活动所体现出来的大趋势,来模拟人类心智在符号层面上所进行的信息处理进程。

工程师调整系统的微观信息传递活动之趋势的基本方法如下:先是让系统对输入信息进行随机处理,然后将处理结果与理想处理结果进行比对。若二者吻合度不佳,则系统触发自带的“反向传播算法”来调整系统内各个计算单元之间的联系权重,使得系统给出的输出与前一次输出不同。两个单元之间的联系权重越大,二者之间就越可能发生“共激发”现象,反之亦然。然后,系统再次比对实际输出与理想输出,如果二者吻合度依然不佳,则系统再次启动反向传播算法,直至实际输出与理想输出彼此吻合为止。

完成此番训练过程的系统,除了能够对训练样本进行准确的语义归类之外,一般也能对那些与训练样本比较接近的输入信息进行相对准确的语义归类。譬如,如果一个系统已被训练得能够识别既有相片库里的哪些相片是张三的脸,那么,即使是一张从未进入相片库的新的张三照片,也能够被系统迅速识别为张三的脸。

如果读者对于上述技术描述还似懂非懂,不妨通过下面这个比方来进一步理解人工神经元网络技术的运作机理。假设一个不懂汉语的外国人跑到少林寺学武术,师生之间的教学活动该如何开展?有两种情况:第一种情况是,二者之间能够进行语言交流(外国人懂汉语或者少林寺师傅懂外语),这样一来,师傅就能够直接通过“给出规则”的方式教授他的外国徒弟。这种教育方法,或可勉强类比基于规则的人工智能路数。

另一种情况是,师傅与徒弟语言完全不通,在这种情况下,学生又该如何学武呢?唯有靠如下办法:徒弟先观察师傅的动作,然后跟着学,师傅则通过简单的肢体交流来告诉徒弟,这个动作学得对不对(譬如,如果对,师傅就微笑;如果不对,师傅则棒喝徒弟)。进而,如果师傅肯定了徒弟的某个动作,徒弟就会记住这个动作,继续往下学;如果不对,徒弟就只好去猜测自己哪里错了,并根据这种猜测给出一个新动作,并继续等待师傅的反馈,直到师傅最终满意为止。很显然,这样的武术学习效率是非常低的,因为徒弟在胡猜自己的动作哪里出错时会浪费大量的时间。但“胡猜”二字恰恰切中了人工神经元网络运作的实质。概而言之,这样的人工智能系统其实并不知道自己得到的输入信息到底意味着什么——换言之,此系统的设计者并不能与系统进行符号层面上的交流,正如在前面的例子中师傅是无法与徒弟进行言语交流一样。而这种低效学习的“低效性”之所以在计算机那里能够得到容忍,则缘于计算机相比于自然人而言的一个巨大优势:计算机可以在很短的物理时间内进行海量次数的“胡猜”,并由此遴选出一个比较正确的解。一旦看清楚了里面的机理,我们就不难发现:人工神经元网络的工作原理其实是非常笨拙的。

“深度学习”应该是“深层学习”

那么,为何“神经元网络技术”现在又有了“深度学习”这个后继者呢?这个新名目又是啥意思呢?

不得不承认,“深度学习”是一个带有迷惑性的名目,因为它会诱使很多外行认为人工智能系统已经可以像人类那样“深度地”理解自己的学习内容了。但真实情况是:按照人类的“理解”标准,这样的系统对原始信息最肤浅的理解也无法达到。

为了避免此类误解,笔者比较赞成将“深度学习”称为“深层学习”。因为该词的英文原文“deeplearning”技术的真正含义,就是将传统的人工神经元网络进行技术升级,即大大增加其隐藏单元层的数量。这样做的好处,是能够增大整个系统的信息处理机制的细腻度,使得更多的对象特征能够在更多的中间层中得到安顿。

比如,在人脸识别的深度学习系统中,更多的中间层次能够更为细腻地处理初级像素、色块边缘、线条组合、五官轮廓等处在不同抽象层面上的特征。这样的细腻化处理方式当然能够大大提高整个系统的识别能力。

但需要看到,由此类“深度”化要求所带来的整个系统的数学复杂性与数据的多样性,自然会对计算机硬件以及训练用的数据量提出很高的要求。这也就解释了为何深度学习技术在21世纪后才逐渐流行,正是最近十几年以来计算机领域内突飞猛进的硬件发展,以及互联网普及所带来的巨大数据量,才为深度学习技术的落地开花提供了基本保障。

但有两个瓶颈阻碍了神经元网络-深度学习技术进一步“智能化”:

第一,一旦系统经过训练而变得收敛了,那么系统的学习能力就下降了,也就是说,系统无法根据新的输入调整权重。这可不是我们的终极理想。我们的理想是:假定由于训练样本库自身的局限性,网络过早地收敛了,那么面对新样本时,它依然能够自主地修订原来形成的输入-输出映射关系,并使得这种修订能够兼顾旧有的历史和新出现的数据。但现有技术无法支持这个看似宏大的技术设想。设计者目前所能够做的,就是把系统的历史知识归零,把新的样本纳入样本库,然后从头开始训练。在这里我们无疑又一次看到了让人不寒而栗的“西西弗斯循环”。

第二,正如前面的例子所展现给我们的,在神经元网络-深度学习模式识别的过程中,设计者的很多心力都花费在对于原始样本的特征提取上。很显然,同样的原始样本会在不同的设计者那里具有不同的特征提取模式,而这又会导致不同的神经元网络-深度学习建模方向。对人类编程员来说,这正是体现自己创造性的好机会,但对于系统本身来说,这等于剥夺了它自身进行创造性活动的机会。试想:一个被如此设计出来的神经元网络-深度学习结构,能够自己观察原始样本,找到合适的特征提取模式,并设计出自己的拓扑学结构吗?看来很难,因为这似乎要求该结构背后有一个元结构,能够对该结构本身给出反思性的表征。关于这个元结构应当如何被程序化,我们目前依然是一团雾水——因为实现这个元结构功能的,正是我们人类自己。让人失望的是,尽管深度学习技术带有这些基本缺陷,但目前的主流人工智能界已经被“洗脑”,认为深度学习技术就已经等于人工智能的全部。一种基于小数据,更加灵活、更为通用的人工智能技术,显然还需要人们投入更多的心力。从纯学术角度看,我们离这个目标还很远。

(作者任职于复旦大学哲学学院)

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/487357.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Quanta杂志长文翻译:通过信息论判定个体的边界

本文是“Quanta magazine”文章“What Is an Individual? Biology Seeks Clues in Information Theory” 的全文翻译。译者Peter,原文地址 https://www.quantamagazine.org/what-is-an-individual-biology-seeks-clues-in-information-theory-20200716/导读&#x…

linux语言 翻译工具,Linux文本转语音工具eSpeak介绍

Text to speech tool in LinuxeSpeak是一款 Linux 命令行工具,能把文本转换成语音。它是一款简洁的语音合成器,用C语言编写而成,它支持英语和其它多种语言。eSpeak 从标准输入或者输入文件中读取文本。虽然语音输出与真人声音相去甚远。但是&…

因果学习的三个层次

来源:混沌巡洋舰昨天龚鹤扬博士在集智的讲座因果学习综述,我借此机会结合我的理解给大家总结客串下这个讲座,和因果学习的核心内容,及巡洋舰一段时间关于因果的文章汇总。这个讲座分为三部分,第一是什么因果及其哲学基…

人与机器——解析人工智能的三大类别以及哲学家的相关思想实验

来源:北京物联网智能技术应用协会你是否曾经产生过怀疑,你身边的某个人可能是个机器人呢?毕竟现在由于技术的发展,机器人的外观、行为都有可能被设置得和人类十分相像。这似乎有些荒谬和匪夷所思,但是你如何能百分之百…

MIT最新报告:完全无人驾驶仍需10年,马斯克:特斯拉已经实现

来源:机器学习研究组订阅号两年前,麻省理工学院成立了「未来工作特别小组」,这个小组目前有20多人,旨在研究「大众创新年代」的工作演变。近期,他们发表了一个最新的报告,重点关注了自动驾驶领域的进展。而…

win7 linux双系统win7启动不了怎么办,双系统windows打不开怎么办|苹果双系统win7打不开怎么解决|mac双系统打不开解决方法-系统城...

2016-03-30 19:28:38  浏览量:22401很多用户都会在电脑上安装Windows双系统甚至多系统,在开机的时候就会出现一个启动菜单让用户选择,如果没有选择将会自动启动默认的系统,那么双系统要怎么修改默认的启动项呢?今天系…

是时候抛弃旧的摩尔定律了

来源:IEEE转自:悦智网在技术领域最著名的准则之一就是摩尔定律。在过去55年的时间里,“摩尔定律”已经描述并预测了晶体管的缩小,如一组称为技术节点的数字在过去以大约每两年一次的频率更新。像一些基于物理学的世界末日时钟一样…

网络对抗技术—-网络对抗实验四

学 号:201421430008 中国人民公安大学 Chinese people’ public security university 网络对抗技术 实验报告 实验四 恶意代码技术 学生姓名 吴宙杨 年级 2014 区队 3 指导教师 高见老师 信息技术与网络安全学院 2016年11月7日 实验任务总纲 2016—20…

北大副校长詹启敏回应“25篇论文造假”,​PubPpeer到底靠不靠谱?

来源:科研大匠今日,北京大学常务副校长、北大医学部主任、中国工程院院士詹启敏在个人公众号“潇敏 ScienceArt”上发布《詹启敏关于相关情况的说明》文章,回应了昨日 DeepTech 对北京大学常务副校长詹启敏 25 篇相关论文受到学术不端质疑。事…

c语言课设报告时钟vc环境,C语言课程设计报告模拟时钟转动程序

C语言课程设计报告模拟时钟转动程序 课程设计报告题 目 课 程 名 称 结构化程序设计课程设计 院 部 名 称 专 业 班 级 学 生 姓 名 王蕾 学 号 课程设计地点 课程设计学时 指 导 教 师 金陵科技学院教务处制 程序设计综合课程设计I目 录第一章 课程设计的目的和要求 1.1 C 语言…

用人工智能监督人工 遭遇非技术困局

来源:科技日报远程办公常态化催生云监工软件市场。近日一款名为Enaible的AI监工软件销售火爆,这种AI软件不仅可以盯着员工干活,还可以对员工的工作效率进行打分……一场新冠肺炎疫情,让远程办公逐渐成为常态。钉钉、飞书、企业微信…

Windows10 【系统周期表】【系统下载表】【大型软件表】

系统周期表 商用名称商用英文名代号版本系统版本上市日期服务周期备注Windows 10无Threshold 1150710.0.10240.174432015.07.292015.07.29 - 2015.11.12默认值Windows 10十一月更新Windows 10 November UpdateThreshold 2151110.0.10586.9622015.11.122015.11.12 - 2016.08.02W…

2020年中国城市人工智能发展指数报告

来源 | 36氪研究院(转载请注明来源)编辑 | 张775大维度、20个三级指标,全面剖析中国36个城市人工智能发展情况2020年是全面建成小康社会与“十三五”规划收官之年,为了实现全面建设小康社会的发展目标、增强经济发展韧性&#xff…

c语言程序设计 函数说课,《C语言程序设计》之函数说课课件.ppt

您所在位置:网站首页 > 海量文档&nbsp>&nbsp计算机&nbsp>&nbspC/C资料《C语言程序设计》之函数说课课件.ppt16页本文档一共被下载:次,您可全文免费在线阅读后下载本文档。下载提示1.本站不保证该用户上传的文档完整性&#x…

中科院院士:40年7位诺奖得主,美国贝尔实验室做对了什么?

来源:科学网作者:夏建白本文介绍高科技的摇篮之一―― 美国贝尔实验室。本文将不具体介绍在贝尔实验室中发明晶体管、集成电路、激光器、光通信等的具体研究过程,而是介绍贝尔实验室的历届领导和管理思想,尝试探讨其取得这样重大成…

麻省理工最新报告:完全无人驾驶仍需10年

来源:机器人网、新智元两年前,麻省理工学院成立了「未来工作特别小组」,这个小组目前有20多人,旨在研究「大众创新年代」的工作演变。近期,他们发表了一个最新的报告,重点关注了自动驾驶领域的进展。而得出…

一键多功能按键识别c语言,单片机一键多功能按键识别设计

1.实验任务如图4.9.1所示,开关SP1接在P3.7/RD管脚上,在AT89S51单片机的P1端口接有四个发光二极管,上电的时候,L1接在P1.0管脚上的发光二极管在闪烁,当每一次按下开关SP1的时候,L2接在P1.1管脚上…

人工智能会取代科学家吗

来源:光明日报传统认为,科技工作因其高度的创新性,因此科技工作者很难被人工智能取代。但日前,国际学术期刊《自然》发表的一篇论文吸引了大家的眼球。科学家们改造了一种汽车装配线上常见的机器人,让它可以在化学实验…

C语言if( x)的意思,c语言中if(x)是什么意思?_后端开发

对比说明PHP7的优化提升_后端开发此篇张是我对PHP7跟PHP以前版本做的一个对比&#xff0c;先来说下PHP7带来的新东西&#xff1a;类型的声明、【set_exception_handler()】、新增操作符“??”“<>”、匿名函数、define定义常量数组、命名空间引用优化等。c语言中if(x)表…

钱老论逻辑、思维科学、智能机(一)

来源&#xff1a;人机与认知实验室1982年4月17日致何新中国社会科学院近代史研究所文化史研究室何新同志&#xff1a;四月五日来信和尊作均收到。我对哲学和逻辑学都是外行&#xff0c;有时想想这方面的问题&#xff0c;也只是业余爱好而已。您来下问于我&#xff0c;不敢不答&…