第一次,人类在人工神经网络中发现了“真”神经元

来源:学术头条

本文经授权转载自机器之心(almosthuman2014)

OpenAI 的研究者们在人工神经网络 CLIP 上发现了「真」神经元,这种机制解释了 AI 模型对令人惊讶的视觉呈现进行分类时,为何拥有如此的准确性。研究人员表示,这是一项重要发现,可能对计算机大脑乃至人类大脑的研究产生重大影响。

这或许意味着通用人工智能距离我们并没有想象的那么远。但理解了抽象概念的神经元,却也会做出一些令人啼笑皆非的理解。

15 年前,Quiroga 等人发现人脑中包含多模态神经元。这些神经元能够对围绕常见高级主题的抽象概念簇产生反应,而不是任意特定的视觉特征。其中最著名的神经元当属 Halle Berry 神经元,它能够对美国女演员「哈莉·贝瑞」的照片、图像和文本产生反应。

今年 1 月初,OpenAI 提出了一种通用视觉系统 CLIP,其性能媲美 ResNet-50,并在一些有挑战性的数据集上超过现有的视觉系统。给出一组以语言形式表述的类别,CLIP 能够立即将一张图像与其中某个类别进行匹配,而且它不像标准神经网络那样需要针对这些类别的特定数据进行微调。

最近,OpenAI 又有了一个惊人发现:CLIP 模型中出现了多模态神经元!这类神经元能够对以文本、符号或概念形式呈现的相同概念作出反应。例如「Spider-Man」神经元(类似 Halle Berry 神经元)能够对蜘蛛图像、文本「spider」的图像和漫画人物「蜘蛛侠」做出响应。

在 CLIP 模型中发现的神经元具备与人脑中 Halle Berry 神经元类似的功能,相比之前的人工神经元有所进步。

这一发现为合成视觉系统与自然视觉系统中的普遍机制——抽象提供了线索。研究人员发现 CLIP 的最高层将图像组织为 idea 的松散语义集合,从而为模型的通用性和表示的紧凑性提供了简单解释。

OpenAI 表示:这一发现或许可以解释 CLIP 模型的分类准确率,也是理解大型语言模型在训练过程中学习到的关联和偏见的重要一步。

那么,CLIP 中的多模态神经元到底是什么样子呢?OpenAI 研究人员利用可解释性工具进行了探究,发现 CLIP 权重内的高级概念包含很多人类视觉词汇,如地区、面部表情、宗教图像、名人等。通过对神经元影响力的探究,我们可以更加了解 CLIP 如何执行分类。

CLIP 中的多模态神经元

OpanAI 的论文《Multimodal Neurons in Artificial Neural Networks》建立在近十年来对卷积网络解释的研究基础上,该研究首先观察到许多经典方法可以直接应用于 CLIP。OpenAI 使用两种工具来理解模型的激活,分别是特征可视化(通过对输入进行基于梯度的优化来最大化神经元的激活)和数据集示例(观察数据集中神经元最大激活图像的分布)。

通过这些简单的方法,OpenAI 发现 CLIP RN50x4(ResNet-50 利用 EfficientNet 扩展规则扩增 4 倍)中的大多数神经元都可以得到解释。这些神经元似乎是「多面神经元」的极端示例,它们只在更高层次的抽象上对不同用例做出响应。

例如,对于夏季和冬季两个不同季节,文本、人脸、Logo、建筑物、室内、自然和姿态等表现出了不同的效果:

对于美国和印度两个不同国家,文本、人脸、Logo、建筑物、室内、自然和姿态等也呈现出了不同的效果:

OpenAI 惊奇地发现,其中很多类别似乎是利用颅内深度电极记录的癫痫患者内侧颞叶中的镜像神经元,包含对情绪、动物和名人做出反应的神经元。

然而,OpenAI 对 CLIP 的研究发现了更多这类奇怪但绝妙的抽象,包括似乎能计数的神经元、对艺术风格做出响应的神经元,甚至对具有数字修改痕迹的图像做出响应的神经元。

多模态神经元的构成是怎样的

这些多模态神经元能够帮助我们理解 CLIP 如何执行分类。使用一个稀疏线性探针即可以很容易地查看 CLIP 的权重,从而了解哪些概念结合在一起实现了 ImageNet 数据集上的最终分类。

如下图所示,存钱罐似乎是由一个「finance」神经元和瓷器(porcelain )神经元组成的。「Spider-Man」神经元也表现为一个蜘蛛检测器,并在「谷仓蜘蛛」(barn spider)的分类中发挥重要作用。

对于文本分类,OpenAI 的一个关键发现是,这些概念以类似于 word2vec 目标函数的方式包含在神经元中,它们几乎是线性的。因此,这些概念构成了一个单代数,其行为方式类似于线性探针。通过线性化注意力,我们也可以像线性探针那样检查任意句子,具体如下图所示:

错误的抽象

CLIP 的抽象化程度揭示了一种新的攻击向量(vector of attack),OpenAI 认为这种向量并未在以往的系统中表现出来。和很多深度网络一样,模型最高层上的表征完全由这类高级抽象控制。但是,区分 CLIP 的关键在于程度(degree),CLIP 的多模态神经元能够在文字和符号之间实现泛化,而这可能是一把双刃剑。

通过一系列精心设计的实验,OpenAI 证明了可以利用这种还原行为来欺骗模型做出荒谬的分类。此外,OpenAI 观察到,CLIP 中神经元的激发通常可以借助其对文本图像的响应来控制,从而为攻击该模型提供了一个简单的向量。

举例而言,金融神经元可以对存钱罐和货币符号串「$$$」做出响应。通过强制性地激活金融神经元,我们可以欺骗 CLIP 模型将一条狗分类为存钱罐。具体如下图所示:

野外攻击

OpenAI 将这类攻击称为「typographic attack」。研究人员穷尽 CLIP 模型鲁棒性读取文本的能力,发现即使是手写文本图像也能骗过模型。如下图所示,在「史密斯奶奶」青苹果表面贴上写着「iPod」的纸张,系统将其错误分类为「iPod」。

研究人员认为这类攻击还可能以更微妙、不明显的形式出现。CLIP 的输入图像往往用多种细微复杂的形式进行抽象,这可能会对一些常见模式进行过度抽象——过度简化,进而导致过度泛化。

偏见和过度泛化

CLIP 模型基于精心收集的网络图像进行训练,但它仍然继承了许多未经检查的偏见与关联。研究人员发现 CLIP 中的许多关联是良性的,但也有一些关联会带来损害,如对特定个人或组织的贬损。例如,「Middle East」(中东)神经元与恐怖主义存在关联,「immigration」(移民)神经元对拉丁美洲有反应,甚至有的神经元还对黑皮肤人群和大猩猩产生反应。这映射了早期其他模型中存在的图像标注问题,而这是不可接受的。

这些关联对此类强大视觉系统的应用提出了极大挑战。不管是经过微调还是使用零次学习,这些偏见和关联大概率仍会存在于系统中,而它们也将以可见或不可见的方式影响模型部署。我们或许很难预测很多带偏见的行为,如何度量和纠正它们是非常困难的事情。OpenAI 认为这些可解释性工具可以提前发现关联和歧视,进而帮助从业者规避潜在的问题。

OpenAI 表示他们对 CLIP 的理解仍在继续,而是否发布 CLIP 模型的大型版本尚属未知。

这一研究或许会对 AI 技术,甚至神经科学研究打开一条新路。「因为我们不了解神经网络运作的机制,因此很难理解它们出错的原因,」OpenAI 的联合创始人、首席科学家 Ilya Sutskever 说道。「我们不知道它们是否可靠,或它们是否存在一些测试中未发现的漏洞。」

此外,OpenAI 还发布了用于理解 CLIP 模型的工具,例如 OpenAI Microscope,它最近更新了 CLIP RN50x4 中每个神经元的特征可视化、数据集示例和文本特征可视化。详情参见:https://microscope.openai.com/models

图源:https://microscope.openai.com/models/contrastive_4x?models.technique=deep_dream

研究者还公布了 CLIP RN50x4 和 RN101 的权重,参见 GitHub 项目:https://github.com/openai/CLIP

原文链接:https://openai.com/blog/multimodal-neurons/

https://distill.pub/2021/multimodal-neurons/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI破解脑电波,准确率超80%!高度还原你眼中最美的ta

本文转自公众号:新智元一千个人眼中有一千个哈姆雷特。由于主观差异,人类的审美有千万种。对于个人偏好的观察,人类尚且还需要思考揣摩,何况是机器,如何做到呢?但最近赫尔辛基大学和哥本哈根大学的一个研究…

svn安装配置

1、安装 #rpm -q subversion #yum -y install subversion 2、创建仓库 #mkdir -p /var/svn/svnrepos #svnadmin create /var/svn/svnrepos 3、修改权限控制文件authz #cd /var/svn/svnrepos/conf/ #vi authz 4、修改账号密码文件passwd #vi passwd 5、修改svn服务配置文件svnse…

委员建议开辟多种科研资助模式,呼唤“科研悬赏制”

本文资源来源自:中国新闻网转自公众号:科奖中心“创新的力量蕴藏在全社会之中,创新的资源理应向全社会开放。”全国政协委员,民盟中央常委、宁夏区委会主委冀永强近日接受中新社记者采访时表示,应积极鼓励探索“科研悬…

入局智慧城市,科技互联网巨头路在何方?

来源:亿欧智库我国已进入智慧城市建设新时期。各大巨头先后入局,拓展云服务场景,赋能政务管理与生产生活的方方面面。未来,场景延展、生态构建与人文关怀将成为智慧城市发展的大趋势。随着新基建政策、“十四五”规划和二〇三五年…

什么是道德?

什么是道德? 热爱青年 百家号17-12-0615:23《什么是道德》 盖凡圣哲之学,不知有多少被后人歪曲谬解,长而久之,错误的反倒变成真理,害人不浅。 比如“道德”之说。绝大多数人理解成一种伦理概念。我们从小带大受到的洗脑…

马斯克的星际飞船SN10又炸了,但技术却向前迈出一大步!

来源:世界先进制造技术论坛(AMT)编辑:小艾 当地时间2021年3月3日,“钢铁侠”马斯克旗下太空探索公司Space X启动星际飞船(Starship)原型SN10的10公里飞行测试。在德克萨斯州进行高空试飞后,首次成功着陆&am…

Elasticsearch 5.6.5 安装head插件

head安装包,下载地址:https://github.com/mobz/elasticsearch-head/archive/master.zip head 插件不能放在elasticsearch-5.6.5文件夹里,head 插件需要单独放,单独去执行;所以在elasticsearch-5.6.5同级目录下解压了 h…

MEMS传感器的下一轮技术变革

来源:麦姆斯咨询例如,红外探测器和微流控器件市场就在新冠肺炎大流行中获得了现象级的大幅增长。此外,疫情带来的居家隔离、远程办公,推动了5G部署、“非接触”语音交互以及数据中心等应用发展,从而加速了射频滤波器、…

当量子计算遇到机器学习

作者: Dr.Alessandro Crimi 译者: 苏本如出品:CSDN(ID:CSDNnews)量子计算和机器学习已经成为当今炙手可热的话题。排除一些明显的炒作外,这当中也有一些真正的基础。随着传统计算技术的发展…

王贻芳院士:我们的科技管理过度强调竞争,缺乏稳定支持

来源: 科学网作者:倪思洁“我们中国的GDP大概很快会实现世界第一,我们什么时候也能在纯科学方面对世界有重大贡献呢?”3月7日,全国人大代表、中科院院士、中科院高能物理研究所所长王贻芳在江苏代表团上发言说。王贻芳…

城市大脑全球标准研究3:如何理解城市大脑中的“大脑”?

作者:刘锋前言:2015年城市大脑概念和定义提出时,城市大脑的本意是指应用范围,覆盖地域非常广大的城市级神经系统,是巨大的“脑“,这里的“大”与大数据的”大”含义相同,此后产业界也有认为城市…

Django 模板系统2

1. tags 2. 母版和继承   1. 母版   就是一个普通的HTML文件,提取多个页面的公共部分   减少代码量 修改十分方便   定义block块   2. 使用(继承)   在子页面中   {% entends base.html %}   重新修改block块中的内容   3…

记pbcms网站被攻击,很多标题被篡改(1)

记得定期打开网站看看哦! 被攻击后的网站异常表现:网页内容缺失或变更,页面布局破坏,按钮点击无效,...... 接着查看HTML、CSS、JS文件,发现嵌入了未知代码! 攻击1:index.html 或其他html模板页面的标题、关键词、描述被篡改(俗称,被挂马...),如下: 攻击2:在ht…

Nature撤稿!三年前微软在量子计算上的巨大胜利终究是个错误

文章来源:wired多年来,为了构建一台能够实际运行的量子计算机,微软一直押注一种称为马约拉纳费米子的量子粒子。三年前,由微软资助的研究团队在《自然》杂志发表的论文称,证明这种粒子确实存在,但这一发现遭…

分布式事务两阶段提交

前言 不知道你是否遇到过这样的情况,去小卖铺买东西,付了钱,但是店主因为处理了一些其他事,居然忘记你付了钱,又叫你重新付。又或者在网上购物明明已经扣款,但是却告诉我没有发生交易。这一系列情况都是因为…

【重磅收藏】智源发布《人工智能的认知神经基础白皮书》

来源:brainnews完整报告下载链接????https://event-cdn.baai.ac.cn/20210308/2020-brain-and-machine-intelligence-report.pdf(可点击「阅读原文」查看)《2020年人工智能的认知神经基础白皮书》指导老师:智源“人工智能的认知…

ConcurrentHashMap源码剖析(1.8版本)

目录 ConcurrentHashMap源码剖析数据结构NodeForwardingNodeTreeNodeTreeBin核心成员核心函数ConcurrentHashMap(int initialCapacity)initTableputgettreeifyBintryPresizetransferaddCountConcurrentHashMap源码剖析 基于jdk1.8。 参考文章: https://yq.aliyun.co…

2021十大关键显示科技趋势

来源:国际信息显示学会SID排版:珊妮作者:Sri Peruvemba,CEO,Marketer International Inc.翻译:SID China2021年显示技术正在发生巨变,随着我们进入未来十年,我们将拥有更加智能、紧凑…

科技议题“破圈”有利还是有弊|观点

编辑:赵路排版:郭刚作者:李侠最近几年时常出现科技议题进入社会领域并引起社会广泛关注的现象,学界通常将之称为“破圈”,即议题突破科技界原有的狭小圈子而进入更大的社会领域,并引来社会热议。客观地说&a…

学术研究发现英特尔 CPU 存在新漏洞

作者:Thomas Claburn译者:Sambodhi策划:施尧美国的芯片黑客又想出了一种方法,利用英特尔的处理器设计选择来窃取敏感数据。伊利诺伊大学香槟分校的博士生 Riccardo Paccagnella、硕士生 Licheng Luo 和助理教授 Christopher Fletc…