这5个数学猜想最早在30年前提出,如今AI证明它们都错了

来源:AI科技评论

编译:琰琰

编辑:青暮

近日,以色列特拉维夫大学研究团队在预印论文库提交了一篇名为“Constructions in combinatorics via neural networks“的论文,在这篇论文中,研究人员通过机器学习算法证伪了图论(Graph Theory)领域的5个数学猜想。

图论是数学领域的一个重要分支,存在着大量长期无法证实或证伪的数学猜想。论文一作Adam Zsolt Wagner表示,“数学家认为这些猜想是正确的,但无法证明它们,我们尝试使用AI算法来寻找一些示例,发现这些示例将反驳图论中一些长期存在的猜想”。

要证伪一个数学猜想虽然只需要提出一个反例,但不一定是件容易的事情。比如近期被证伪的单位猜想,从提出到被证伪,相隔了80年的时间。

论文地址:https://arxiv.org/pdf/2104.14516.pdf

这些猜想包括:

1、关于图的最大特征值和匹配数之和的猜想,由M. Aouchiche 和 P. Hansen在论文“A survey of automated conjectures in spectral graph theory”中提出,论文发表于2010年。

2、Aouchiche–Hansen提出的关于图的距离谱和邻近性的猜想,由M. Aouchiche 和 P. Hansen在论文“Proximity, remoteness and distance eigenvalues of a graph”中提出,论文发表于2016年。

3、K. L. Collins在论文“On a conjecture of Graham and Lov´asz about distance matrices”(发表于1989年)中提出的猜想,作者通过证明树的邻接多项式和距离多项式的系数序列的峰值可以相距很远反驳了这个猜想。

4、L. Hogben and C. Reinhart在论文“Spectra of variants of distance matrices of graphs and digraphs: a survey”(发表于2021年)中提出的猜想,作者证明了在距离拉普拉斯算子的余谱下,图的传输正则性不保持,从而反驳了这个猜想。

5、J. Aaronson, C. Groenland, A. Grzesik, B. Kielak, 和 T. Johnston在论文“Exact hyperplane covers for subsets of the hypercube”(发表于2020年)中提出的猜想,其提出可以用很少的超平面覆盖超立方体的某些子集。

1

交叉熵方法

计算机辅助证明在数学猜想中有着悠久的历史,如Appel和Haken在1976年证明了四色定理,Hales在1998年证明了开普勒猜想。近几年,随着人工智能技术不断取得新突破,机器学习算法,尤其是强化学习逐渐成为数学家们普遍使用的科学工具之一。

在最新的研究中,基于强化学习的AI已经能够在Atari游戏中达到超过人类的水平。这些研究成果,引起了作者的思考:如果不为算法提供任何关于问题的先验知识,它是否可以在组合数学和图论中发现证实或证伪猜想的反例?

在强化学习领域,深度Q网络及其变体,如Double Deep Q-Networks和Dueling Deep Q-Networks已经取得了广泛成功。

这些算法适合小动作空间问题,对于图论问题都是不错的选择。作者表示,在经过尝试后,他们发现这些方法在稀疏奖励设置环节需要很长时间的训练。虽然该问题可以得到有效的解决,如在sessions 期间给予某种人工奖励来指导agent,但这样做会引入其它问题,或者在不知情的下影响反驳猜想的目标。

因此,在有限的计算资源下,作者发现一种名为深度交叉熵( deep cross-entropy)方法的算法更为成功。虽然该算法不如上述深度Q网络先进,但它具有很好的收敛性,而且对选择合适的超参数的敏感性要低得多。

下面来简单介绍一下如何应用交叉熵方法来寻找结构。

在交叉熵(deep cross-entropy)方法中,神经网络只学习预测给定状态下最佳的移动路径,而不学习状态或状态-动作下的值函数。给定任意一个状态作为神经网络的输入,然后输出该状态下所有可能移动的概率分布,概率最高的代表最佳路径。

用神经网络生成如下结构,首先要求它预测最好的第一个字符应该是什么,然后输出是字符表上的概率分布,从中随机抽取一个元素,并将其反馈到网络中,询问第二个字符的最佳值是多少。

每次迭代都会按照上述方法生成大量的随机sessions(构造)。计算每个奖励,然后扔掉除了y的最高值。接下来再让神经网络从剩下的sessions中学习,这意味着稍微调整一下神经网络的权重,使其更有可能输出在性能最好的sessions中使用的移动路径。这样做的目的是加强我们的神经网络,以执行那些导致良好奖励的行动。

猜想1:关于图的匹配值与最大特征值之和

猜想1:设G是n≥ 3个顶点的连通图,λ_1是最大特征值和µ是匹配数,那么它们满足不等式:

该猜想最初通过使用AutoGraphiX被证实,AutoGraphiX是一种可以用来自动查找各种图形参数之间关系的软件。后来被Stevanovi(n=600)推翻。在本文中,作者通过交叉熵方法找到了一个更小的显性反例,如下:

当n=19,奖励函数为λ_1 + µ时,每个迭代中前10% sessions的平均奖励变化情况:

值得注意的是,它对n≤ 18都是正确的,最小反例是n=19。

如图4所示,它有最大的特征值√ 10和匹配数2,所以λ_1 + µ ≈ 5.16 < 5.24 ≈ √( 19− 1)+1。

图3显示了最佳sessions是如何随着迭代次数的增加而变化的。虽然有明显的 run-to-run的变化,但通常需要几个小时才能在平均PC上的程序找到反例。

很容易看出树状图是上述猜想最佳反例之一。事实上,给定一个具有最大匹配数M的图G,可以在不将图断开的情况下从E(G)\M中重复删除边。这样做不会改变µ(G) 但是减小了最大特征值。有趣的是,如图3所示,网络迅速发现了树状图是最好的,然后它开始减小直径并收敛到图4中的图形。

猜想2:关于图的邻近特征值和距离特征值

猜想2:由于Auchiche–Hansen提出。设G是n≥4个顶点的连通图,直径为D,接近度为π,距离谱为∂1≥ . . . ≥ ∂n,那么它们满足不等式:

驳斥该猜想的策略与上述猜想完全相同,唯一的变化将是改变奖励函数。当n=30时训练神经网络可得到下图:

对于n=30,上图可能不是最优的:当我们中止算法时,最佳图仍然在变化。之所以选择终止学习过程,是因为在这个阶段,迭代前10%的每个图基本上都有相同的结构:一条长路径,中间有一个交点,其邻域被划分为不相交的区域,唯一不同的是这些区域的规模。

给定这些信息,可以简单地增加顶点的数量并改变这个构造中的区域大小,直到最终找到一个反例,如图6所示:

这个反例是在13个顶点上取一条路径,并将n个悬垂顶点附加到与其中相邻顶点来构造的。这幅图的直径为12,经计算机验证,只要n≥ 190,它满足π + ∂8<0。这种图被称为双尾彗星,已被证明在给定阶数和直径的树类上最小化接近度,它可以证明不一定总是正的。从有限的计算机实验来看,203个顶点上的图接近该猜想的最小反例,这似乎是合理的。

猜想3:关于树和邻接多项式峰值的距离

该猜想由Collins提出,非零系数的绝对值序列构成单峰序列,其峰值与CPD(T)的归一化系数的峰值位于同一位置。其中CPD(T)为树状图T的距离矩阵的特征多项式。

这里作者只关注峰值的位置,一旦知道了极值的近似情况,证明如下定理就可以有力地驳斥Collins的猜想。

该定理表明,即使假设两个序列有许多非零项,两个峰值也可能相距很远,这避免了m(T)在何时很小的问题。

第四个猜想

关于各种图矩阵的谱,主要考虑:图的哪些信息可以从这样一个矩阵谱中恢复?作者重点讨论了G的拉普拉斯(Laplacian)距离,用DL(G)表示。

这个问题由来已久,要了解关于这个问题的广泛研究概况,可参见L. Hogben 和 C. Reinhart发表的论文“Spectra of variants of distance matrices of graphs and digraphs: a survey”。在这项研究中,Hogben和Reinhart非常重视透射正则图的谱特性——事实上,如他们调查中的表7.2所示,自然图特性不知是否被DL共谱所保留。

本篇论文主要是通过显示DL余谱不保持传输规律来填补这一研究空白。

得到的结构并不是唯一的,有许多不同的方法可以设计一个奖励函数,与交叉熵方法一起使用产生如下一对共谱图。在之前的实验中,奖励函数的表现不是很好,最后在一次偶然运算中,算法发现了一个结构。这听起来是一种偶然,也很有可能其他算法更适合这个问题。

第五个猜想

猜想5:对于任何B⊂ {0,1}k和n∈ N与N≥ k, 都有:

一旦确定了集合B和整数n、k,找到相关的精确覆盖数就可以用一个整数程序来表达,其中包含{0,1}^n与超平面的所有可能交集的指示符变量。通过根据一些特殊的启发式方法对集合B进行采样并求解得到的线性程序,最终能够找到下面的反例来推测该猜想。

设n=6,k=4,B={1000,1111,1001,1011,0110,0001,0010,0111}。通过一个案例分析可以直接验证不能被两个超平面覆盖,因此

令人惊讶的是,它还可以用四个超平面覆盖

2

结论

本研究的主要贡献在于,作者通过强化学习方法成功地发现了组合数学问题中的显式结构和反例。这些反例全部使用了交叉熵方法,它的主要优点是算法简单,具有良好的收敛性,在不需要学习复杂的多步骤策略的简单环境中良好,这使它成为一个理想的基线方法。

虽然交叉熵方法在一般情况下工作得很好,但是存在大量更复杂的强化学习算法,这些算法可能在某些问题上表现得更好。在组合学,图论或其他数学领域,使用其他强化学习算法发现一些证伪猜想的反例,是一件很有趣的事。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/484654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java AQS 核心数据结构-CLH 锁及优化

Java AQS 核心数据结构-CLH 锁 什么是CLH锁 CLH 锁是对自旋锁的一种改进&#xff0c;有效的解决了以上的两个缺点。 第一个是锁饥饿问题。在锁竞争激烈的情况下&#xff0c;可能存在一个线程一直被其他线程”插队“而一直获取不到锁的情况。第二是性能问题。在实际的多处理上…

M/M/m排队模型 (单队列多服务台并联服务模型)数学建模: 基于生灭过程的理论计算和基于事件推进的Matlab模拟仿真思路

M/M/m排队模型 (单队列多服务台并联服务模型) 数学建模: 基于生灭过程的理论计算和基于事件推进的Matlab模拟仿真思路 原创文章&#xff0c;转载文章请注明出处&#xff1a;©️Sylvan Ding &#x1f389;&#x1f389;&#x1f389; 摘要 本文研究M/M/m单队列多服务台并…

用物理学来为生命技术及制度的演化找出规律-读《为什么世界不会失控》

来源&#xff1a;混沌巡洋舰物理学的规律是最底层的最永恒的&#xff0c;但能够对抗变化&#xff0c;维持自身结构的活系统&#xff0c;其规律则是最丰富的。“The physics of life”这本书&#xff0c;则是用能量的产生和耗散为视角&#xff0c;解释一切活系统&#xff0c;包括…

collection 多态 会自动转型为子类 继承多态需要显示转型

转载于:https://www.cnblogs.com/classmethond/p/10057670.html

深入地下,实地探访!不用人挖煤的智能煤矿长什么样?

来源&#xff1a;脑极体未来智能实验室的主要工作包括&#xff1a;建立AI智能系统智商评测体系&#xff0c;开展世界人工智能智商评测&#xff1b;开展互联网&#xff08;城市&#xff09;云脑研究计划&#xff0c;构建互联网&#xff08;城市&#xff09;云脑技术和企业图谱&a…

这些行业,将率先落地AI芯片 | 星前沿

来源&#xff1a;联想之星广义上&#xff0c;所有面向AI应用的芯片都可以称为AI芯片。目前一般认为是针对AI算法做了特殊加速设计的芯片。现阶段&#xff0c;这些人工智能算法一般以深度学习算法为主&#xff0c;也可以包括其他浅层机器学习算法。人工智能芯片分类一般有按技术…

[NOI2007]社交网络

题目描述 在社交网络&#xff08;social network&#xff09;的研究中&#xff0c;我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人&#xff0c;人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上&#xf…

vueJs的简单入门以及基础语法

vue的api vue官网API 1基础语法 1-1基本数据绑定 <div id"app">{{ msg }} </div> //script new Vue({el:"#app",//代表vue的范围data:{msg:hello Vue //数据} }) 在这个例子中我们可以进行赋值 var app new Vue(...); app.msg 初探vue; //那…

应用数学的强大威力

来源&#xff1a;数学中国 应用数学思想是科研当中非常重要的一种思维方式以及研究方法。今天我们就借助戴世强教授的三篇有关应用数学的文章来详细了解一下这些问题&#xff1a;什么是“应用数学思维”&#xff1f;我们如何在研究中使用应用数学思维&#xff1f;应用数学思维…

正则化实现降噪,分别使用最小二乘、定步长梯度下降和回溯法的梯度下降求解最优解

正则化实现降噪&#xff0c;分别使用最小二乘、定步长梯度下降和回溯法的梯度下降求解最优解 原创文章&#xff01;转载需注明来源&#xff1a;©️ Sylvan Ding’s Blog ❤️ 实验目的 参考 INTRODUCTION TO NONELINEAR OPTIMIZATION. Amir Beck. 2014 的 3.4 Denoising …

双向 RNN

1.基本理论 双向 RNN 结合时间上从序列起点开始移动的 RNN 和另一个时间上从序列末尾开始移动的 RNN 2.逻辑图 其中 h (t) 代表通过时间向前移动的子 RNN 的状态&#xff0c;g (t) 代表通过时间向后移动的子 RNN 的状态 允许输出单元 o (t) 能够计算同时依赖于过去和未来且对时…

Hadoop伪分布式配置和搭建,hadoop单机安装,wordcount实例测试,hadoop安装java目录怎么找,问题及问题解决方法

Hadoop伪分布式配置和搭建&#xff0c;hadoop单机安装&#xff0c;wordcount实例测试&#xff0c;hadoop安装java目录怎么找&#xff0c;问题及问题解决方法 环境说明 系统&#xff1a;ubuntu18.04 主机名&#xff1a;test1 用户名&#xff1a;sylvan hadoop单机安装 换源操作…

AI时代竟有智能化鸿沟,具备哪些条件才能跨过?

来源&#xff1a;CSDN移动互联网“早古”时期&#xff0c;普通人因为收入差距问题而无法做到人手一部智能手机&#xff0c;从而导致数字鸿沟。同样&#xff0c;在当前这个AI&#xff0c;也就是人工智能扮演越来越关键作用的时代&#xff0c;企业也站在了类似的抉择交接线上——…

[js] 渲染树构建、布局及绘制

渲染树构建、布局及绘制 转载于:https://www.cnblogs.com/iiiiiher/p/10065345.html

INTRODUCTION TO NONELINEAR OPTIMIZATION Excise 5.2 Freudenstein and Roth Test Function

Amir Beck’s INTRODUCTION TO NONELINEAR OPTIMIZATION Theory, Algorithms, and Applications with MATLAB Excise 5.2 INTRODUCTION TO NONELINEAR OPTIMIZATION Theory, Algorithms, and Applications with MATLAB. Amir Beck. 2014 本文主要涉及题目(ii)的MATLAB部分&…

石正丽/周鹏团队发表冠状病毒新研究,进一步证明新冠非实验室泄漏

来源&#xff1a;中国生物技术网 新冠病毒SARS-CoV-2造成了近一个世纪以来最具破坏性的大流行COVID-19&#xff0c;而其中尚未解决的科学问题之一是这种病毒的自然来源。近日&#xff0c;来自中科院武汉病毒所、中国科学院大学的研究人员在预印本网站BioRxiv上提交了一篇论文&…

L1正则化降噪,对偶函数的构造,求解含L1正则项的优化问题,梯度投影法

L1正则化降噪&#xff0c;对偶函数的构造&#xff0c;求解含L1正则项的优化问题&#xff0c;梯度投影法 本文主要实现L1正则化降噪&#xff0c;L2 正则化降噪的文章在&#xff1a; https://blog.csdn.net/IYXUAN/article/details/121565229 原创文章&#xff01;转载需注明来源…

HBase之Table.put客户端流程(续)

上篇博文中已经谈到&#xff0c;有两个流程没有讲到。一个是MetaTableAccessor.getRegionLocations&#xff0c;另外一个是ConnectionImplementation.cacheLocation。这一节&#xff0c;就让我们单独来介绍这两个流程。首先让我们来到MetaTableAccessor.getRegionLocations。1.…

普华永道:AI规模化应用,基础知识先行

来源&#xff1a;Forbes作者&#xff1a;Cindy Gordon编译&#xff1a;科技行者人工智能&#xff08;AI&#xff09;是正在改变很多行业的游戏规则。据统计&#xff0c;人工智能有望为2030年的全球经济贡献高达15.7万亿美元&#xff0c;比中国和印度目前的产出之和还要多。其中…

ADMM,ISTA,FISTA算法步骤详解,MATLAB代码,求解LASSO优化问题

ADMM,ISTA,FISTA算法步骤详解&#xff0c;MATLAB代码&#xff0c;求解LASSO优化问题 原创文章&#xff01;转载需注明来源&#xff1a;©️ Sylvan Ding’s Blog ❤️ 实验目的 了解 ADMM, ISTA, FISTA 算法的基本原理、收敛性和复杂度&#xff1b;使用上述三种算法&#…