引导直觉解决数学猜想难题,DeepMind登上《Nature》封面

90b518ba3d0519fe002aa25d0909ea90.png

来源:机器之心

编辑:nhyilin

多年来,数学家们一直使用计算机来生成数据以帮助搜索数学模式,这种被称为实验数学的研究方法产生出许多重要的猜想,例如BSD猜想。虽然这种方法已经取得成功并且相当普遍,但从这些数据中识别和发现数学模式仍然主要依赖于数学家。

随着计算机领域的飞速发展,利用计算机寻找数学模式变得越来越重要,因为计算机生成的数据量爆炸式激增。一些非常复杂的数学对象(例如具有数千个维度的对象),可能因为太深奥而无法直接推理。出于这些限制,DeepMind的研究者希望采用人工智能以全新的方式增强数学家的洞察力。

数学家的直觉在数学发现中扮演着极其重要的角色,只有结合严格的形式主义和良好的直觉才能解决复杂的数学问题。下图的框架描述了一种通用方法,数学家可以通过该方法使用机器学习工具来启发他们对复杂数学对象的直觉。这是一种自然且富有成效的方式,将统计学和机器学习很好地融入了数学研究。

601dc40a239ee600d4b53c70db0d7da7.png

从概念上讲,这个框架提供了一个直觉试验台,可以快速验证两个量之间的关系直觉是否值得研究,如果是,试验台会指导它们之间如何相关。DeepMind已经使用上述框架帮助数学家在两种情况下获得有影响力的数学结果。

DeepMind作为一家全球领先的人工智能公司,他们探索了机器学习 (ML) 在识别数学结构和模式方面的潜力。现在他们帮助数学家解决了一些数学难题,成为AI首次探索纯数学的前沿研究,相关论文今天已在《自然》杂志上发表。

b88aa8c6e9a2d45520ffa354c4ffd174.png

论文地址:

https://www.nature.com/articles/s41586-021-04086-x


具体来说,DeepMind与顶级数学家合作,将AI应用于纯数学中的两个领域:拓扑和表示论。其中DeepMind与牛津大学的 Marc Lackenby 教授和András Juhász 教授一起,通过研究纽结 (Knot)的结构发现了不同数学领域之间的意外联系;与悉尼大学的 Geordie Williamson 教授一起,DeepMind发现了一个关于排列猜想的新公式,该猜想几十年来一直未解决。

c4d4b0d700c2d5e2b0a9b26b405294be.gif


拓扑难题

DeepMind与牛津大学的 Marc Lackenby 教授和András Juhász教授一起,通过研究纽结 (Knot)的结构发现了不同数学领域之间的意外联系。

低维拓扑是数学中一个活跃且有影响力的领域,DeepMind发现了纽结代数和几何不变量之间的关系,建立了数学中一个全新的定理。这些不变量有许多不同的推导方式,但DeepMind主要关注两大类:双曲不变量和代数不变量。这两种类型的不变量来自不同的数学学科,因此在它们之间建立联系是非常有趣的。


下图显示了纽结不变量的一些例子。

a5bdaa89ba60882a824edc7a93c2a898.png

DeepMind假设在一个纽结的双曲不变量和代数不变量之间存在一种未被发现的关系。监督学习模型能够检测大量几何不变量和signature σ(K) 之间存在的模式,并用归因技术(attribution technique)确定最相关的特征。下图(a) 显示了cusp几何的三个不变量,图 3b 中部分地显示了其中的关系。

e1371cf086768b3b50a9473c83306a26.png


表示论难题

在澳大利亚数学家、悉尼大学教授Geordie Williamson的帮助下,DeepMind借助人工智能解决了表示论中一个长期存在的猜想——组合不变性猜想。

273e3e11a3975e8544f8b01a98b4b2a7.pngGeordie Williamson

组合不变性猜想指出某些有向图和多项式之间应该存在关系。DeepMind使用机器学习方法确认了这种关系确实存在,并确定其可能与称为破碎的二面角区间(broken dihedral interval)和外反射(extremal reflection)的结构有关。有了这些知识,Williamson教授就能够发现一个令人惊讶的算法来解决组合不变性猜想。

表示论是数学中抽象代数的一支。旨在将代数结构中的元素「表示」成向量空间上的线性变换,借以以研究结构的性质。其中,任何表示都是不可约表示的直和。不可约表示的结构由 Kazhdan-Lusztig (KL) 多项式控制,这些多项式与组合学、代数几何和奇点理论都有着深厚的联系。

组合不变性猜想作为一个关于 KL 多项式的开放猜想,已经存在了约40年,但只有部分进展。在理解对象之间关系方面取得进展的一个障碍是 Bruhat 区间。下图给出了小 Bruhat 区间及其 KL 多项式的例子。

8363ab80cda66ea50921ed5e5e213d40.png

DeepMind的研究把组合不变性猜想作为初始假设,利用机器学习的方法发现了一个能够预测 KL 多项式Bruhat区间的监督学习模型,并且具有相当高的准确率。通过测试将 Bruhat 区间输入网络的方式,研究者发现某些图表和特征的选择特别有助于准确预测。特别地,借助更准确的估计函数,研究者还发现有一种受先前工作启发的子图足以计算 KL 多项式。

该研究已经在超过 300 万个示例中对新算法进行了计算验证,下图是表示论归因的例子。

67ceecc0aaa1b2194b9c2b498f796c61.png

研究者进一步探究了机器学习是否可以阐明不同数学对象之间的关系。下图显示了两个「Bruhat 区间」及其相关的「Kazhdan-Lusztig 多项式」其中,Bruhat 区间是一个图表,它代表了通过一次只交换两个对象来反转对象集合的顺序的所有不同方式。KL 多项式能够告诉数学家一些关于该图在高维空间中存在的不同方式的信息。当 Bruhat 区间有 100 或 1000 个顶点时,有趣的结构才开始出现。

d7b68461d4849ac9b16ce5ae6bdd3cf3.png

毫无疑问,机器学习和人工智能系统为识别和发现数学模式提供了广阔的前景。DeepMind表示他们希望这项研究成为将人工智能作为纯数学中有用工具的开始。我们相信,那些悬而未决的数学难题,一定会通过数学家与AI的合作突破,人类的直觉也会借助AI上升到一个新的水平。

参考文献:

https://deepmind.com/blog/article/exploring-the-beauty-of-pure-mathematics-in-novel-ways

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

8455156e6f951f28e13a6c1c1afc091e.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/483120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Centos6.5硬盘故障修复

以企业Centos6.5Linux为案例来修复系统,步骤如下: (1)远程备份本地其他重要数据,出现只读文件系统,需要先备份其他重要数据基于rsync|scp远程备份,其中/data为源目录,/data/backup/2…

认知AI的兴起:2025年AI将会发生质的飞跃

来源: Gadi Singer自 1956 年 AI 的概念首次被提出,至今已有 60 多年的发展史。如今,随着相关理论和技术的不断革新,AI 在数据、算力和算法 “三要素” 的支撑下越来越多地走进我们的日常生活。但是,这一系列惊喜的背后…

不上市就等死?AI故事难讲,豪门盛宴背后的“血”与“泪”

图片来源:视觉中国来源:帮尼资讯 部分参考来源:福布斯中国、凤凰网财经、前瞻产业研究院,图片来源网络最近,商汤港股IPO终于迎来新进展。12月7日,商汤集团在香港启动公开发售。据悉,香港公开发售…

windows下搭建vue开发环境

安装node.js 包管理器 到官网 下载安装包直接默认安装,安装完成后验证是否正常安装。打开命令提示符: 输入node -v。 如果显示版本号则证明安装完成。安装vue 打开命令提示符输入: npm install vue全局安装 vue-cli npm install --global vue…

中科院发布11大领域171个热点和新兴前沿!有你的研究方向吗?

来源:科学网12月8日,中国科学院科技战略咨询研究院、中国科学院文献情报中心与科睿唯安联合向全球发布了《2021研究前沿》报告和《2021研究前沿热度指数》报告。《2021研究前沿》报告遴选展示了在农业科学、植物学和动物学,生态与环境科学&am…

Reparameterization Trick

目录 Sample() is not differentiableReparameterization trickToo ComplexSample() is not differentiable 现在我们得到的不是一个向量,得到的是一个分布,而分布是无法使用梯度下降的Reparameterization trick Too Complex 转载于:https://www.cnblogs…

DeepMind 打造 AI 游戏系统,可以玩扑克、国际象棋、围棋等,战斗力爆表

来源:AI科技大本营(ID:rgznai100)编译:禾木木谷歌母公司 Alphabet 的人工智能实验室 DeepMind 长期以来一直投资于游戏人工智能系统。实验室的理念是,游戏虽然缺乏明显的商业应用,但却是认知和推理能力的独…

OO第四单元——UML及其解析器——总结 暨 OO课程大总结

第四单元总结 第四单元主要内容是写代码解析UML,因此需要理解UML UML相关 starUML的储存方式是一个.mdj文件,通过使用文本编辑器观察这个文件,我们可以看出这是一个json格式储存的文件。 通过把.mdj后缀名改为.json,可以更加直观地…

Nature重要新发现:将运动小鼠的血液输入久坐小鼠中,可以改善大脑功能!

来源:生物通 斯坦福大学医学院的研究人员已经表明,大量锻炼的成年小鼠的血液对年龄相同、久坐不动的小鼠的大脑有益。运动小鼠血液中的一种蛋白质似乎是主要原因。Tony Wyss-Coray一项新的研究表明,有可能把跑马拉松的小鼠对大脑的好处转移到…

软件构造-犯错的艺术——健壮性与正确性,异常,防御式编程,debugging与test的思考与总结...

健壮性与正确性 健壮性与正确性是不同的——一个倾向于使程序尽可能保持运行,即使遇到错误,一个倾向于使程序尽可能正确,不在意保持运行 异常 异常分为两种——checked exception与unchecked exception 二者的区别在于: checked e…

地球系统科学简史:理解地球复杂性的多学科探索历程

来源:集智俱乐部作者:Will Steffen, Katherine Richardson等人 译者:晏丽 审校:张澳 编辑:邓一雪 导语我们的地球是一个有生命的有机体,不仅有大气、陆地、海洋之间的物理化学过程,生物也会对环…

数值微分

像这样的由全部变量的偏导数汇总而成的向量称为梯度(gradient),梯度可以像下面这样来实现,这里使用的是用数值微分求梯度的方法。 def numerical_gradient(f, x):h 1e-4 # 0.0001grad np.zeros_like(x) # 生成和x形状相同的数组for idx in …

数据结构与算法——哈希表与字符串

文章目录1.预备知识1.1 最简单的哈希——统计字符个数1.2 哈希表排序整数1.3 哈希映射的问题2.最长回文串2.1 题目描述2.2 C代码实现3.单词规律3.1 题目描述3.2 算法思路3.3 C代码实现4.字母异位词分组4.1 题目描述4.2 算法思路4.3 C代码实现5.无重复字符的最长子串5.1 题目描述…

Science重磅:DeepMind再获突破,用AI开启理解电子相互作用之路

来源:学术头条作者:青苹果编辑:hs排版:李雪薇当电子问题遇到了神经网络,会碰撞出什么样的火花呢?DeepMind 的最新研究向我们揭晓了答案。刊登在最新一期 Science 论文 Pushing the frontiers of density fu…

腾讯-地图:腾讯位置服务

ylbtech-腾讯-地图:腾讯位置服务1.返回顶部 2.返回顶部3.返回顶部4.返回顶部5.返回顶部 1、https://lbs.qq.com/product/miniapp/customized/2、6.返回顶部作者:ylbtech出处:http://ylbtech.cnblogs.com/本文版权归作者和博客园共有&#xff…

2022年六大值得关注的边缘计算趋势

来源: 边缘计算社区关于边缘计算的许多方面并不新鲜,但它仍在快速发展。例如,“边缘计算”包括已经存在了几十年的分布式零售商店分支系统。这个术语也包含了当地工厂和电信提供商计算系统的各种形式,尽管这是一种比历史规范更紧密…

RateLimiter的 SmoothBursty(非warmup预热)及SmoothWarmingUp(预热,冷启动)

SmoothBursty 主要思想 记录 1秒内的微秒数/permitsPerSencond 时间间隔interval,每一个interval可获得一个令牌 根据允许使用多少秒内的令牌参数,计算出maxPermits setRate时初始化下次interval时间,及storedPermits acquire时,计算当前now…

未来已来:全球XR产业洞察

来源:德勤Deloitte编辑:蒲蒲近日,德勤中国科技、传媒和电信行业推出元宇宙系列报告《元宇宙系列白皮书—未来已来:全球XR产业洞察》,聚焦XR产业发展趋势。报告指出,多元融合是元宇宙的演变趋势。在元宇宙发…

谷歌、哈佛联手绘出「百万分之一」人脑神经3D连接图!天量数据竟可塞满14亿块1T硬盘...

来源:神经科技编辑:Yezi审阅:mingzlee7前不久,谷歌和哈佛大学联手发布人脑神经3D连接图,涵盖人脑一百万分之一的信息,但数据已经塞满了1400块1T硬盘!现在,这个研究团队表示&#xff…

python replace()

转载于:https://www.cnblogs.com/JackFang-X/p/11090449.html