完美的优化目标,人工智能的盲点

f6274490b601c0f95c103d5a6950af7b.png

来源:AI科技评论

译者:辛西娅

编辑:维克多

人工智能(AI)系统的脆弱性一直被行业人员所诟病,稍微的数据错误就会使系统发生故障。例如在图像识别中,图片微小的像素改变,不会干扰人类视觉,但机器可能会发生紊乱。正如CVPR 2017论文中所论述的那样“修改一个像素,就能让神经网络识别图像出错”。

3b96e033c34ca61f310602b27b4476eb.png

至于原因,研究人员有过很多探究:数据不够好,算法设计不精妙....近日,在科技媒体wired上,计算机科学家Erik J. Larson撰文表示:优化思维是AI脆弱性的根源。(译者注:这里的优化思维,也可以翻译成“追求足够好”、追求完美AI)

“We then must step toward heresy by acknowledging that the root source of AI’s current fragility is the very thing that AI design now venerates as its high ideal: optimization.”

优化是推动AI尽可能准确的动力,在抽象的逻辑世界中,这种推动无疑是好的,但在AI运行的现实世界中,每一个好处都是有代价的。例如需要更多数据来提高机器学习计算精度,需要更好的数据来确保计算的真实性。

7441c129a79a0cd4076ec6d4a5c93cbf.png

“这种更好”必须保证不断的进行数据收集,因此当AI开始逐渐形成完整的画面时,新数据的出现可能改变现有状况,从而导致系统崩溃。这也是大众眼中近乎完美的AI经常“犯精神病”的原因之一:将狗狗当成菠萝,把无辜的人看成通缉犯。

1

优化的脆弱性

人类不是一个优化者,过去几万年大脑本身也并没有进化出完美优化的功能。大脑是轻量级的,从不追求100%的准确性,并能够从小数据中得出假设。

换句话说,大脑满足于在“门槛”上混日子,如果1%的准确率就能让它生存,那么这就是大脑所需要的准确率。但这种最小生存策略也会导致认知偏见,让人们思维封闭、鲁莽、宿命论、恐慌。

AI严格的数据驱动训练方法能有效避免这种认知偏见,却也让其陷入“过度纠正”。确实,对人类而言,好的心态能够抵御完美主义带来的破坏性影响,一个不那么神经质的大脑已经帮助我们在“生活的冲撞和摇摆”中茁壮成长。

将这种“反脆弱”引入AI,那么也意味着:与其追求压缩越来越大的数据堆,不如专注于提高AI对不良信息、用户差异和环境动荡的容忍度。这种AI将消耗更少的能量,产生更少的随机失误,带来更少的负担。如何做?目前来看,有三种方式。

2

构建AI直面不确定性

五百年前,实用主义大师尼科勒·马基雅维利指出,世俗的成功需要一种反直觉的勇气。对于聪明人来说,大部分不存在的知识将是不必要的;生活往往不会符合我们的预期。因此,人类可以改变对模糊性的处理方式。

例如当AI遇到单词suit时,它会通过分析更多的信息来确定该单词是表示衣服,还是法律名词。分析更多信息通常意味着利用大数据缩小答案范围,这在99.9%的情况下有效,剩下的0.1%,AI仍然会“自信”的将suit表示为法律名词,但实际上它是衣服。

因此,AI应该有足够大的答案范围。研究人员在设计AI时候,应该允许“模棱两可”,并将模糊选项代入后续任务中,就像人类能够读懂一首诗歌的多个潜在含义一样。如果下游任务不允许“模棱两可”的存在,这时设计的AI应该能请求人类的帮助,让人类代替它进行决策。

3

用数据作为灵感来源

目前的AI希望通过大数据的发散性思维实现创造。但众多科学研究显示,生物的创造力往往涉及无数据和非逻辑过程。因此,依靠大数据或许能够批量创造出许多“新”作品,但这些作品仅限于历史数据的混合和匹配。换句话说,大规模的发散性思维的产生必然伴随着低质量。

数据驱动的创造所产生的局限性可以从GPT-3以及Artbreeder等文本和图像生成器中看到。通过“观察”历史场景,然后添加专家意见,试图产生下一个梵高。但结果往往是这位“梵高”只能复制以前画家的作品。这种AI设计文化,显然误解了创新的含义。这种情况从大家对FaceNet的盛誉中可见一斑,因为有一些面部识别的创新,仍然是蛮力优化。可以类比为调整汽车的扭矩带增加汽车性能,并称其为汽车交通革命。

因此,是时候将数据看成灵感来源,而不是伪造来源了。90年前,《科学发现的逻辑》一书的作者卡尔·波普尔就指出:用事实推翻想法比证明想法更合乎逻辑。将这种思维引入到AI产物中,我们可以将数据的功能从小想法的大量产生者转变成大规模的毁灭者(a mass destroyer of anything except),当然一些前所未有的想法除外。(译者注:这里的大规模毁灭者是指将“重复作品”筛选出来)

因此,与其无休止的产生“重复作品”,不如让计算机搜索有价值的作品,从而找到未被赏识的“梵高”。

4

人机结合

将人脑融入AI听起来很科幻,短期内很难有大的进展,但我们可以另辟蹊径,设计友好的人机关系。当前人与机器的合作关系并没有发挥它应有的作用,人类要么充当机器的保姆,要么充当AI系统更新的附属品。前者意味着乏味、枯燥,后者意味着被动。如何解决?当前的工作重点已经关注三个方面:

1.攻关科研,让AI有能力“知道”它何时缺少训练数据。换句话说,追求正确的AI,不如追求让AI知道自己何时不正确,赋予AI认知自己的智慧。人类的大脑无法拥有计算机的数据处理速度,所以当无知的算法认为自己无所不能的时候,人类的干预总是太晚。因此,应该通过编程让“傻瓜”发现自己是“傻瓜”。

2. 完善人机交互界面。因追求优化而造成的不透明设计,即黑盒算法。交互设计应该消除黑盒性质,例如将刚性按钮(只有一个选项)替换成包含概率的选项,标明第一个选项的可能性为70%,第二个选项的可能性为20%,第三个选项的可能性为5%,以此类推。如果没有满意的选项,那么就要求AI重新定向,或者进行手动操作,以最大的限度提高计算机的逻辑和人类的主动性。

3. 仿照大脑建立去中心化的AI模型。大脑包含去中心化的认知机制,例如逻辑、叙述、情感,它们之间相互制约、相互平衡。因此,AI系统也可以设计包含不同推理架构,例如如果深度学习不能访问它所需要的数据,系统就可以过渡到if-then的控制程序。更重要的是,人工智能可以向外看,从人类学的线索中学习,而不是狂热地集中在自己的内部优化策略上。

以上技术建议并不是未来虚幻的想象,它是现在就可以实现的设计创新。需要研究者抛弃大数据以及完美智能的假设,在这个不断变化的世界中,创造性要求比最准确要求来的更加明智。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

307411e514c69665ca79ca64bc1820fe.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

宇宙和世界真的是虚拟的吗?

来源:数学中国 2021年元宇宙无疑成为科技领域最火爆的概念之一,扎克伯格曾表示未来脸书将从一家社交媒体公司转变为一家元宇宙公司,之后元宇宙这个词席卷了整个互联网与投资圈。在大多数人还搞不懂元宇宙是什么的时候,科技公司们已…

粒子物理学有了新的基础数学理论

来源:科技日报科技日报柏林2月13日电 (记者李山)近日,来自奥地利和英国的科学家共同发表了一个粒子物理学的基础数学新理论。他们定义和研究了黎曼曲面上存在的非常稳定的希格斯丛,其蕴涵了全局幂零锥稳定分量的多重性…

2022年重大颠覆性科技创新趋势报告(完整版)

来源:点滴科技资讯未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业…

02.Mybatis的动态代理方式实现增删改查

动态代理的方式实现增删改查: 通过约定的方式定位sql语句 约定 > 配置文件 > 硬编码 约定的目标是省略掉通过硬编码的方式定位sql的代码,通过接口直接定位出sql语句,以下代码为通过硬编码的方法定位sql: 1      //读取conf.xml 配置文件2 Reader…

孙正义看未来30年:这个趋势,永远不会错(附完整PPT)

来源:大数据实验室 对于今后30年来讲,我认为现在是个很关键的时刻,尤其是在各位的人生当中。而且现在是一整个概念的转变,我们要包容这个概念的转变。我想先给大家看两张照片。这是美国纽约的第五大道,左边那张是1900年…

可视化解释11种基本神经网络架构

来源:海豚数据科学实验室标准,循环,卷积和自动编码器网络随着深度学习的飞速发展,已经创建了完整的神经网络体系结构主机,以解决各种各样的任务和问题。尽管有无数的神经网络架构,但对于任何深度学习工程师…

设计模式之二抽象工厂设计模式

继上篇简单工厂设计模式之后,今天继续讲解抽象工厂设计模式。在简单工厂中,我们的工厂类一次只可以处理一类产品。那么如果我们想处理多类产品,简单工厂是满足不了的。必须要用抽象工厂设计模式。 我们先从概念上来了解下什么是抽象工厂设计模…

Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...

来源:凹非寺作者:晓查 明敏你知道吗?在地球上,楼层越低,时间过得越慢。这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。△ 在不同高度差上验证时钟变快…

DARPA可解释AI研究(XAI计划)的4年回顾与经验总结

来源:智源社区作者:David Gunning, Eric Vorm, Jennifer Yunyan Wang, Matt Turek编译:牛梦琳摘要:从项目管理人员和评估人员的角度,对国防高级研究计划局(DARPA)的可解释人工智能(X…

​从ASML年报看半导体产业的未来

来源:半导体行业观察在前几天的文章《光刻机巨头ASML的十年变迁》中,笔者梳理了ASML近10年来的财报数据,介绍了其EUV/DUV光刻机出货量、年销售额、研发投入以及各地区的销售情况等。近日,ASML又公布了2021年年报,我们一…

04.MyBatis别名的设置和类型转换器

别名的设置:(别名不区分大小写): 设置单个别名: <configuration><properties resource"db.properties" /><typeAliases><!-- 设置单个别名 --><typeAlias type"com.offcn.entity.Person" alias"person"/><type…

史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步...

来源&#xff1a;机器之心过去三年&#xff0c;DeepMind 和瑞士洛桑联邦理工学院 EPFL 一直在进行一个神秘的项目&#xff1a;用强化学习控制核聚变反应堆内过热的等离子体&#xff0c;如今它已宣告成功。DeepMind研究科学家David Pfau在论文发表后感叹道&#xff1a;「为了分享…

机器人流程自动化技术的新发展

来源&#xff1a;学习时报作者&#xff1a;李蕾蓬勃发展的数字经济&#xff0c;是全球新一轮科技进步的产物&#xff0c;直接受到新兴数字技术与智能技术的驱动。机器人流程自动化技术&#xff08;简称“RPA”&#xff09;&#xff0c;是近些年获得快速发展与广泛应用的重要智能…

论人工智能历史、现状与未来发展战略

来源&#xff1a;《学术前沿》作者&#xff1a;郭毅可人工智能问世60多年来&#xff0c;承载着人类对自己的智慧的无限自信。在这样的自信下&#xff0c;人工智能发展到了今天&#xff0c;人们在追求机器从事尽可能多的智力劳动的路上走得很快&#xff0c;也很远。今天人工智能…

PHP 开发者大会

PHPCON 2019 开发者大会(上海)2019.8.10-8-11 郭新华,和陈雷给我留下的影响很大 再看下天气,利奇马台风,都坐满了,来的都是真爱. Swoole 的韩天峰开始演讲,感觉是程序员标准的样子,哈哈哈 2345 的高旭 讲公司用swoole 的架构 鸟哥因为台风问题没来成,搞了个直播,哈哈哈,感觉很…

IEEE Fellow杨铮:打破「视觉」垄断,无线信号为 AI 开启「新感官」

来源&#xff1a;AI科技评论作者&#xff1a;陈彩娴编辑&#xff1a;岑峰2020年年初疫情刚开始时&#xff0c;清华大学的官方号曾祭出一篇题为《清华教师升级「十大神器」&#xff0c;上课力满格》的推文&#xff0c;讲述了软件学院某老师如何居家办公、探索出一套防止学生偷懒…

对于量子计算来说,99%的准确度足够吗?

UNIVERSITY OF NEW SOUTH WALES来源&#xff1a;IEEE电气电子工程师来自荷兰代尔夫特理工大学&#xff08;Delft University of Technology&#xff09;、日本理化学研究所&#xff08;Riken&#xff09;和悉尼新南威尔士大学&#xff08;UNSW&#xff09;的研究团队在硅中开发…

人工智能将如何改变芯片设计

来源&#xff1a;ScienceAI编译&#xff1a;绿萝摩尔定律的终结正在逼近。工程师和设计师只能将晶体管小型化并尽可能多地封装到芯片中。因此&#xff0c;他们正在转向其他芯片设计方法&#xff0c;将 AI 等技术融入到设计过程中。例如&#xff0c;三星正在将人工智能添加到其内…

计算机科学家证明,为什么更大的神经网络可以做得更好

来源&#xff1a;ScienceAI编辑&#xff1a;萝卜皮我们的物种很大程度上归功于对生的拇指。但如果进化给了我们额外的拇指&#xff0c;事情可能不会有太大改善。每只手一个拇指就足够了。神经网络并非如此&#xff0c;这是执行类人任务的领先人工智能系统。随着他们变得更大&am…

生命,到底是什么?

来源&#xff1a;腾讯研究院作者&#xff1a;Mark A. Bedua译者&#xff1a;宋词、范星辰令人着迷的生命地球表面布满了生命&#xff0c;而且通常很容易辨认。猫、胡萝卜、细菌都是活的&#xff0c;桥、肥皂泡、沙粒都是死的。但众所周知&#xff0c;生物学家们却没有关于生命的…