Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...

856bf25ca8fb04c7a9b1bda7117493ae.png
来源:凹非寺
作者:晓查 明敏

你知道吗?在地球上,楼层越低,时间过得越慢。

这可不是玄学,而是爱因斯坦广义相对论预言的时间膨胀效应:引力越大,时间越慢。

d85366191e6e9802faa601dd313b342d.png

△ 在不同高度差上验证时钟变快(图片来自Nature)

今天Nature封面的一篇文章证明了,即使高度差只有一毫米,时间流逝的速度也不一样,这是迄今为止在最小尺度上验证广义相对论的实验。

1cbc048b0d4c98e2d1106c5b6e617814.png

该研究来自于美国科罗拉多大学JILA实验室的叶军团队。

他率团队开发出世界上最精确的原子钟,得出在一毫米高度差上,时间相差大约一千亿亿分之一,也就是大约3000亿年只相差1秒,与广义相对论预言一致。

这种由于引力不同造成的时间差叫做引力红移,虽然已经得到无数次验证,但是如此高精度的检测还是头一次。

引力改变光频率

广义相对论指出,引力场越强,时间就越慢,从而改变电磁波的频率。

如果一束蓝光射向天空,在引力的作用下,就会向红色端移动,称之为“引力红移”。

448ebb925b0cb4fccd5264ac5c363fc5.png

虽然爱因斯坦早在1915年就预测了这种现象,但是这种“移动”非常小,直到1976年才有了第一次精确的实验验证。

当时科学家用火箭将原子钟送到1万公里的高空,发现它比海平面时钟快,大约73年快一秒。

dd9d237f0d07489028a75c08c5817151.png

△ 在不同高度差上验证时钟变快(图片来自Nature)

虽然这种差距身体无法感知,但却与我们的生活息息相关,因为GPS必须要修正这个极小的时间差才能精确定位。

几乎在12年前的同一天,来自UC伯克利的团队测量了高度差33厘米的两个原子钟的时间差。

现在叶军团队可以做到测量一个原子云内,原子气体上下两端的时间差,而二者之间高度只相差一毫米!

超精准的光晶格钟

为何叶军团队能做到如此精确?那是因为他们使用了一种更精确的时钟——光晶格钟(optical lattice clock)。

这套系统先用6束激光将10万个锶原子逐步冷却,最后用红外激光将锶原子维持在超冷状态。

由于激光的相干性,空间中会有周期出现能量较小的区域,从而将锶原子束缚在一个个煎饼形状的空间里。

6d7eb0d7b6e261aeede7738894461c48.gif

△ 光晶格钟原理(图片来自NIST)

这种设计减少了由光和原子散射引起的晶格扭曲,使样品均匀化,并扩展了原子的物质波。原子的能量状态控制得非常好,创下了所谓的量子相干时间37秒的纪录。

而对提高精度至关重要的,是叶军团队开发的新成像方法。这种方法能提供整个样本的频率分布的微观图。

003d4eb2007ee1a0679bb6119f101f89.png

这样,他们就可以比较一个原子团的两个区域,而不是使用两个独立原子钟的传统方法。

将锶原子冷却后,然后再用一束激光来激发它,将它的外层电子激发到更高的轨道上。

由于只有极小范围的激光频率可以激发电子,因此只要调节激光到恰好激发的频率并测量,就可以极其精确地测量时间。

2bce407add9d35e2cdb2cd259960e524.gif

△ 激光激发锶原子测量频率(图片来自NIST)

由于一毫米范围内的红移很小,大约只有0.0000000000000000001(别数了,总共19个0),为了能提高精度,研究团队用大约30分钟的平均数据解决此问题。

经过90小时的数据分析,他们的测量结果是9.8(2.3)×10-20mm-1,在误差范围内,与广义相对论符合得很好。

eb6e906ffbe95580453a3e02e7e59d24.png

连接量子力学和广义相对论

本项研究的通讯作者叶军表示,此次突破可以把时钟的精确度提升50倍

这有望提高GPS的精确度。

由于引力红移,必须对GPS的原子钟做时间修正,时间修正越准确,也就意味着定位的精度可以越高。

而这对于物理学更是具有重大意义。

最让人兴奋的是,我们现在可以将量子力学和引力联系在一起了!

叶军表示,精确的原子钟将开启在弯曲时空中探索量子力学的可能,比如分布在弯曲时空中不同位置的粒子,是处于怎样的复杂物理状态。

而且,如果能够将目前的测量效果再提升10倍,研究团队就能看到穿过时空曲率时,原子的整个物质波。

也就意味着可以开始探索量子尺度下的引力效应。

加拿大滑铁卢大学理论物理学家Flaminia Giacomini也表示,原子钟是探索这一问题最有希望的系统之一。

4e6e0027921aff567376ce26eb108547.png

叶军表示:也许正是这种微小的频率差打破了量子相干性,才让宏观时间变得经典。

此外,原子钟还可以被应用在显微镜上,来观察量子力学和引力之间的微妙联系。同时也能被应用在天文望远镜上,来更加精确地观测宇宙。

事实上,叶军教授也正在用原子钟寻找神秘的暗物质。

甚至在大地测量学上,原子钟也能帮助研究人员更进一步精确测量地球、改进模型。

通讯作者叶军

最后,我们再来了解一下本项研究的通讯作者——叶军

叶军是美国科罗拉多大学物理系教授、美国国家标准与技术研究院(NIST)和科罗拉多大学联合建立的实验天体物理实验室(JILA)研究院。

94d6d846dbed79c03376512edeec19ff.png

叶军本科毕业于上海交通大学应用物理系;博士毕业于科罗拉多大学,师从诺贝尔物理学奖得主约翰·霍尔。

自1999年开始,叶军在科罗拉多大学博尔德分校任教,在2008年霍尔退休后接手了实验室的管理工作。

2011年,叶军当选为美国国家科学院院士;2017年,当选为中国科学院外籍院士;2020年获得“墨子量子奖”,2021年获得科学突破奖基础物理学奖。

其主要研究领域为超冷原子-分子、精密测量、多体量子物理等。

2007年,叶军及研究团队做出了世界上首台“每7000万年仅误差1秒”的锶原子光钟。

61ad8c4b00a067491eaa635e30e29385.png

之后,他在这一领域不断刷新纪录。

2017年,其团队设计的新型原子钟,将锶原子装入微小的三维立方体中,密度较以前一维原子钟设计中锶原子的密度高出近1000倍,进一步提升原子钟测量精度。

2020年,叶军团队曾在3天内连发Nature、Science论文。

发表在Nature上的《Dipolar evaporation of reactive molecules to below the Fermi temperature》中,其团队首次实现量子简并气体。

另一篇发表在Science的论文《Resonant collisional shielding of reactive molecules using electric fields》,则用量子力学理论解释了分子间的碰撞。

论文地址:
https://www.nature.com/articles/s41586-021-04349-7

参考链接:
[1]https://www.nature.com/articles/d41586-022-00379-x
[2]https://www.sciencedaily.com/releases/2022/02/220216112213.htm
[3]https://www.quantamagazine.org/an-atomic-clock-promises-link-between-quantum-world-and-gravity-20211025/
[4]https://www.nist.gov/news-events/news/2022/02/jila-atomic-clocks-measure-einsteins-general-relativity-millimeter-scale
[5]https://news.berkeley.edu/2010/02/17/gravitational_redshift/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

407234b5ac9d6ffd5fb4e4970c50c579.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482533.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DARPA可解释AI研究(XAI计划)的4年回顾与经验总结

来源:智源社区作者:David Gunning, Eric Vorm, Jennifer Yunyan Wang, Matt Turek编译:牛梦琳摘要:从项目管理人员和评估人员的角度,对国防高级研究计划局(DARPA)的可解释人工智能(X…

​从ASML年报看半导体产业的未来

来源:半导体行业观察在前几天的文章《光刻机巨头ASML的十年变迁》中,笔者梳理了ASML近10年来的财报数据,介绍了其EUV/DUV光刻机出货量、年销售额、研发投入以及各地区的销售情况等。近日,ASML又公布了2021年年报,我们一…

04.MyBatis别名的设置和类型转换器

别名的设置:(别名不区分大小写): 设置单个别名: <configuration><properties resource"db.properties" /><typeAliases><!-- 设置单个别名 --><typeAlias type"com.offcn.entity.Person" alias"person"/><type…

史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步...

来源&#xff1a;机器之心过去三年&#xff0c;DeepMind 和瑞士洛桑联邦理工学院 EPFL 一直在进行一个神秘的项目&#xff1a;用强化学习控制核聚变反应堆内过热的等离子体&#xff0c;如今它已宣告成功。DeepMind研究科学家David Pfau在论文发表后感叹道&#xff1a;「为了分享…

机器人流程自动化技术的新发展

来源&#xff1a;学习时报作者&#xff1a;李蕾蓬勃发展的数字经济&#xff0c;是全球新一轮科技进步的产物&#xff0c;直接受到新兴数字技术与智能技术的驱动。机器人流程自动化技术&#xff08;简称“RPA”&#xff09;&#xff0c;是近些年获得快速发展与广泛应用的重要智能…

论人工智能历史、现状与未来发展战略

来源&#xff1a;《学术前沿》作者&#xff1a;郭毅可人工智能问世60多年来&#xff0c;承载着人类对自己的智慧的无限自信。在这样的自信下&#xff0c;人工智能发展到了今天&#xff0c;人们在追求机器从事尽可能多的智力劳动的路上走得很快&#xff0c;也很远。今天人工智能…

PHP 开发者大会

PHPCON 2019 开发者大会(上海)2019.8.10-8-11 郭新华,和陈雷给我留下的影响很大 再看下天气,利奇马台风,都坐满了,来的都是真爱. Swoole 的韩天峰开始演讲,感觉是程序员标准的样子,哈哈哈 2345 的高旭 讲公司用swoole 的架构 鸟哥因为台风问题没来成,搞了个直播,哈哈哈,感觉很…

IEEE Fellow杨铮:打破「视觉」垄断,无线信号为 AI 开启「新感官」

来源&#xff1a;AI科技评论作者&#xff1a;陈彩娴编辑&#xff1a;岑峰2020年年初疫情刚开始时&#xff0c;清华大学的官方号曾祭出一篇题为《清华教师升级「十大神器」&#xff0c;上课力满格》的推文&#xff0c;讲述了软件学院某老师如何居家办公、探索出一套防止学生偷懒…

对于量子计算来说,99%的准确度足够吗?

UNIVERSITY OF NEW SOUTH WALES来源&#xff1a;IEEE电气电子工程师来自荷兰代尔夫特理工大学&#xff08;Delft University of Technology&#xff09;、日本理化学研究所&#xff08;Riken&#xff09;和悉尼新南威尔士大学&#xff08;UNSW&#xff09;的研究团队在硅中开发…

人工智能将如何改变芯片设计

来源&#xff1a;ScienceAI编译&#xff1a;绿萝摩尔定律的终结正在逼近。工程师和设计师只能将晶体管小型化并尽可能多地封装到芯片中。因此&#xff0c;他们正在转向其他芯片设计方法&#xff0c;将 AI 等技术融入到设计过程中。例如&#xff0c;三星正在将人工智能添加到其内…

计算机科学家证明,为什么更大的神经网络可以做得更好

来源&#xff1a;ScienceAI编辑&#xff1a;萝卜皮我们的物种很大程度上归功于对生的拇指。但如果进化给了我们额外的拇指&#xff0c;事情可能不会有太大改善。每只手一个拇指就足够了。神经网络并非如此&#xff0c;这是执行类人任务的领先人工智能系统。随着他们变得更大&am…

生命,到底是什么?

来源&#xff1a;腾讯研究院作者&#xff1a;Mark A. Bedua译者&#xff1a;宋词、范星辰令人着迷的生命地球表面布满了生命&#xff0c;而且通常很容易辨认。猫、胡萝卜、细菌都是活的&#xff0c;桥、肥皂泡、沙粒都是死的。但众所周知&#xff0c;生物学家们却没有关于生命的…

2022图机器学习必读的11大研究趋势和方向: 微分方程/子图表示/图谱理论/非对称/动态性/鲁棒性/通用性/强化学习/图量子等...

来源&#xff1a;机器学习研究组订阅作者&#xff1a;Michael Bronstein 牛津大学DeepMind人工智能教授、Twitter图机器学习负责人编译&#xff1a;熊宇轩一、要点概述几何在机器学习中变得越来越重要。微分几何和同源场为机器学习研究引入了新的思想&#xff0c;包括利用了对…

day31 线程

01 进程间通信 """ 队列:先进先出 堆栈:先进后出 """ from multiprocessing import Queue q Queue(5) # 括号内可以传参数 表示的是这个队列的最大存储数 # 往队列中添加数据 q.put(1) q.put(2) print(q.full()) # 判断队列是否满了 q.put(3)…

机器学习理论基础到底有多可靠?

来源&#xff1a;机器学习算法与Python实战选自&#xff1a;aidancooper.co.uk 作者&#xff1a;Aidan Cooper编译&#xff1a;机器之心 知其然&#xff0c;知其所以然。机器学习领域近年的发展非常迅速&#xff0c;然而我们对机器学习理论的理解还很有限&#xff0c;有些模型…

07.MyBatis中的关联查询

关联查询&#xff1a; 一对一&#xff1a; 两种方式实现: 1.通过业务扩展的方式进行一对一查询&#xff0c;新建一个实体类&#xff0c;继承其中属性多的一个&#xff0c;然后写上另一个类中的属性&#xff1a; 实体类: 映射文件: 1 <!-- 业务扩展的方式进行一对一查询&…

黄仁勋回应放弃收购Arm:公司战略并没有太大改变

来源&#xff1a;网易智能2月21日消息&#xff0c;芯片巨头英伟达不久前公布了2022财年第四财季财报&#xff0c;显示其营收较上年同期猛增53%&#xff0c;游戏、数据中心和专业可视化市场平台也都实现了创纪录的收入。财报发布后&#xff0c;该公司首席执行官黄仁勋接受美国科…

无生命的AI算不上「智能」

来源&#xff1a;AI前线作者&#xff1a;Ben Dickson译者&#xff1a;王强策划&#xff1a;刘燕什么是智能&#xff1f;以非常快的速度解决复杂的数学问题就算智能吗&#xff1f;在国际象棋中击败世界冠军的力量算智能吗&#xff1f;分辨图像中数千个不同对象的能力算智能吗&am…

MySQL 练习 创建表格2

|--需求说明 #实践课&#xff0c;使用SQL语句创建成绩表#要求&#xff1a;在数据库myschool中&#xff0c;使用SQL语句创建成绩表result&#xff0c;result的结构表见书上 |--实现思路 采用创建表的语句完成 |--代码内容 #实践课&#xff0c;使用SQL语句创建成绩表 #要求&#…

前沿速递:因果涌现在多种因果衡量标准下普遍存在

来源&#xff1a; 集智俱乐部作者&#xff1a;陈昊编辑&#xff1a;邓一雪导语因果涌现理论指出&#xff0c;在宏观尺度下观察复杂系统可以减少因果关系中的噪声&#xff0c;从而得到具有更强因果关联的系统。目前该理论已经在有效信息和整合信息的因果度量标准下得到的验证&am…