研究生常用的几种风险评估方法-专家调查法、蒙特卡洛模拟法、计划评审技术、敏感性分析法、决策树法、影响图法、模糊综合评价方法

其实风险评估就是在充分掌握资料的基础之上,采用合适的方法对已识别风险进行系统分析和研究,评估风险发生的可能性(概率)、造成损失的范围和严重程度(强度),为接下来选择适当的风险处理方法提供依据。今天老徐给大家介绍介绍常用的一些风险评估方法。

一、专家调查法

在风险识别的基础之上,请专家对风险因素的发生概率和影响程度进行评价,再综合整体风险水平进行评价。老徐认为这类方法简单易行,但是大家在分析的时候最好是在采用德尔菲法进行风险识别时同时进行,这样可以极大的节约成本和时间,但是其自身的缺点也比较明显,主观性强,可能会过度依赖于专家水平。

二、蒙特卡洛模拟法

蒙特卡洛模拟法的原理是将项目目标变量和各个风险变量综合在一个数学模拟模型内,每个风险变量用一个概率分布来描述,然后利用计算机产生随机数,并根据随机数在各个风险变量的概率分布中取值,算出目标变量值,经过多次运算即可得出目标变量的期望值、方差、概率分布等指标,绘制累计概率图,供决策者参考。老徐认为这种方法的优点是使用计算机模拟项目的自然过程,比历史模拟方法成本低,结果相对精确;可以处理多个因素非线性、大幅波动的不确定性,并把这种不确定性的影响以概率分布形式表示出来,克服了敏感性分析的局限性。不足之处是依赖于特定的随机过程和选择的历史数据,不能反映风险因素之间的相互关系,需要有可靠的模型,否则导致错误。

三、计划评审技术(PERT)

该方法是用网络图来体现项目中各项活动的进度和相互之间的关系,确定关键路径,计算总工期及概率,再综合考虑资源因素,得到最佳的项目计划方案。PERT主要用于对项目的进度管理,评价进度和费用方面的风险。它适用于评价缺乏历史经验资料的科研或产品研发项目风险以及与进度相关的项目风险。由于该方法的前提是假设项目每项活动的时间服从正态分布或β分布,总工期和关键路径都具有随机性,但是随着关键路径的确定,这一假设就失去意义,因此具有一定的缺陷。

四、敏感性分析法

敏感性分析法是指在假定其他风险因素不变的情况下,评估某一个(或几个)特定的风险因素变化对项目目标变量的影响程度,确定它的变动幅度和临界值,计算出敏感系数,据此对风险因素进行敏感性排序,供决策者参考。这种方法应用广泛,常用于项目的可行性研究阶段,有助于发现重要的风险因素,具体又可分为单因素敏感性分析和多因素敏感性分析。其缺点在于只能体现风险因素的强度而不能反映发生概率,也不能反映众多风险因素同时变化时对项目的综合影响。

五、决策树法

决策树法是指利用图解的形式,将风险因素层层分解,绘制成树状图,逐项计算其概率和期望值,进行风险评估和方案的比较和选择。这种方法层次清晰,不同节点面临的风险及概率一目了然,不易遗漏,能够适应多阶段情形下的风险分析,但用于大型复杂项目时工作量较大,也不适合用于缺乏类似客观数据的项目。

六、影响图法

影响图是指由风险结点集合和反映风险关系的有向弧集合构成的无环有向图,它是在决策树基础之上发展起来的图形描述工具,这种方法优点是概率估计、备选方案、决策者偏好等资料完整;图形直观、概念明确;计算规模随着风险因素个数呈线性增长。缺点是需要获取大量的概率和效用值,对于复杂问题建模困难。

七、模糊综合评价法

风险也具有模糊性,主要表现为风险的强度或大小很难进行明确的界定。模糊综合评价法将项目风险大小用模糊子集进行表达,利用隶属度及模糊推理的概念对风险因素进行排序,以改进的模糊综合评价法为基础,采用层次分析法(AHP)构建风险递阶层次结构,采用专家调查法确定各层次内的风险因素指标权重。

补充说明:
多标签分类的评价指标
多标签分类作为多分类的一种推广,每个样本可以有多个类别,如下图的标签为:sea,sunset。所以其评价指标与多分类的也有差异,本文将介绍几种评价指标。


 1.Hamming loss(汉明损失),表示所有label中错误样本的比例,所以该值越小则网络的分类能力越强。计算公式如下。


其中:|D|表示样本总数,|L|表示标签总数,xi和yi分别表示预测结果和ground truth。xor表示异或运算。

样例:

 

 


  1. from sklearn.metrics import hamming_loss
  2. y_pred = [1, 2, 3, 4]
  3. y_true = [2, 2, 3, 4]
  4. hamming_loss(y_true, y_pred) #输出结果为0.25
  5. hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) #输出结果为0.75

2. Jaccard index(杰卡德指数),概念挺陌生,公式是再熟悉不过了。其中:T表示ground truth,P表示预测结果。再观察这个公式,和检测算法中的IOU多么相近。


3. 精度、召回率和F1值。其中精度计算公式为,召回率计算公式为,F1值的计算为精度和召回率的调和平均数。

4. 准确匹配。这个是最严格的标准了,是预测结果和ground truth完全一致时的样本数与总的样本数的比值。


参考文献:https://en.wikipedia.org/wiki/Multi-label_classification

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481145.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从前馈到反馈:解析循环神经网络(RNN)及其tricks

好像已经有两周没有更新啦。最后这几天都不敢打开订阅号后台了,怕一打开发现掉了几百个粉丝的话就难过死了T_T。然而小夕发现你们并没有离开,感动的差点哭出来,都感觉再不认真写一篇文章就太对不起大家的等待啦。而这两周,经历的事…

多因子风险建模-协方差矩阵、投资组合风险

一、为什么要了解投资风险 在探讨投资风险前,我们不妨思考一个问题:好的投资,取决于哪些因素? 其实,卓越的投资回报,主要来源于四个因素: 收益预测:能形成合力的收益预期&#xff…

啊啊忍不住了,更!新!!!

你萌都还在,好开心 o(≧v≦)o在2017年9月21日这个特殊的日子,小夕在长达30天的沉默后,终于冒泡了!有木有很激动,很期待?!(小夕,你不说我都忘了还有这订阅号了&#xff09…

【数据挖掘】数据挖掘和数据分析基础

参考文献:《Python数据分析与挖掘实战》张良均等 数据挖掘建模过程 定义挖掘目标:理解任务,确定指标数据采样:注意数据的完整性和有效性数据探索:异常值分析、缺失值分析、相关性分析、周期性分析数据预处理&#xff…

Barra 结构化风险模型实现(1)——沪深300指数的风格因子暴露度分析

米筐科技(RiceQuant)策略研究报告:Barra 结构化风险模型实现(1)——沪深300指数的风格因子暴露度分析 江嘉键1 年前1 概述Barra 结构化风险模型是全球知名的投资组合表现和风险分析工具。最近一段时间,我们米筐科技量化策略研究团…

深度学习资料挑的眼花啦?小夕帮你做选择!

小夕还记得几年前刚入坑的时候,老师给的入门资料就是一堆论文!害的小夕差点放弃。。。如今深度学习应用的开发成本越来越低,学习资料越来越多,于是对初学者来说进入了另一个相反的困境——资料过多,让人眼花缭乱&#…

干货 | 深度学习的可解释性研究(一):让模型「说人话」

在这篇文章中:可解释性是什么?我们为什么需要可解释性?有哪些可解释性方法?在建模之前的可解释性方法建立本身具备可解释性的模型在建模之后使用可解释性性方法作出解释关于 BIGSCity参考文献不以人类可以理解的方式给出的解释都叫…

深度解析LSTM神经网络的设计原理

引人入胜的开篇:想要搞清楚LSTM中的每个公式的每个细节为什么是这样子设计吗?想知道simple RNN是如何一步步的走向了LSTM吗?觉得LSTM的工作机制看不透?恭喜你打开了正确的文章! 前方核弹级高能预警!本文信息…

Step-by-step to LSTM: 解析LSTM神经网络设计原理

Ps:喂喂喂,你萌不要光收藏不点赞呀_(:з」∠)_emmmm... 搞清楚LSTM中的每个公式的每个细节为什么是这样子设计吗?想知道simple RNN是如何一步步的走向了LSTM吗?觉得LSTM的工作机制看不透?恭喜你打开了正确的文章&#…

【论文翻译】用知识图谱的多任务特征学习来增强推荐

Wang H, Zhang F, Zhao M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//The World Wide Web Conference. 2019: 2000-2010. 原文链接:https://arxiv.org/pdf/1901.08907.pdf 代码实现:https://github.com/hwwa…

LeetCode-二叉树算法总结-层次遍历,路径总和等

版权声明&#xff1a;本文为博主原创文章&#xff0c;欢迎转载&#xff0c;但请注明出处&#xff0c;谢谢愿意分享知识的你~~ https://blog.csdn.net/qq_32690999/article/details/80484440 </div><link rel"stylesheet" href"https://csdnimg.…

记录一次闲鱼维权事件

-----2017.11.16 最后一次更新----- 小夕也真的没有想到&#xff0c;在万般绝望之时竟然得到了这么多人的帮助。在本文发出后&#xff0c;多位阿里人员积极联系我了解了情况&#xff0c;很感激一位阿里的专家帮我将此事递交给相关部门&#xff0c;让专业的客服直接受理和重审此…

百度作业帮-产品分析

一、商业模式分析 1.1、问答时期&#xff08;2014年2月-2015年1月&#xff09; 商业模式之作业帮V1.0.png两点值得注意&#xff1a; 作业帮的出现有明显的历史原因&#xff0c;即由百度知道团队出品&#xff0c;因此切入K12教育初期&#xff0c;采取的是之前的问答模式&#xf…

【Python自然语言处理】中文分词技术——统计分词

中文分词方法 本文参考自书籍《Python自然语言处理实战&#xff1a;核心技术与算法》 用做个人的学习笔记和分享 1. 规则分词 规则分词的详细笔记 2. 统计分词 2.1 一般步骤 建立统计语言模型。句子划分为单词&#xff0c;对划分结果进行概率分析&#xff0c;获得概率最大的…

你的模型真的陷入局部最优点了吗?

小夕曾经收到过一个提问&#xff1a;“小夕&#xff0c;我的模型总是在前几次迭代后很快收敛了&#xff0c;陷入到了一个局部最优点&#xff0c;怎么也跳不出来&#xff0c;怎么办&#xff1f;”本文不是单纯对这个问题的回答&#xff0c;不是罗列工程tricks&#xff0c;而是希…

如何与深度学习服务器优雅的交互?(长期更新)

0. 故事序言 如果有人问小夕&#xff1a;"小夕&#xff0c;要是人工智能的就业岗位一夜之间消失了&#xff0c;你会去转行做什么呢&#xff1f;" 答曰&#xff1a;"当然是去做Linux运维啊23333" 小夕有一台自己负责的GPU服务器&#xff0c;她可让小夕操碎了…

风控模型师面试准备--技术篇(逻辑回归、决策树、集成学习)

原文地址&#xff1a;https://zhuanlan.zhihu.com/p/56175215 编辑于2019-02-12&#xff0c;持续更新中&#xff0c;有风控建模工作经验的&#xff0c;或者想转行风控建模的小伙伴可以互相交流下... 一.算法 逻辑回归决策树集成学习&#xff08;随机森林&#xff0c;Adaboost&…

step-by-step: 夕小瑶版神经网络调参指南(上)

距离上一篇文章已经过去好久好久好久啦。闭关几个月后&#xff0c;其实早有继续码文章的打算&#xff0c;先后写了一下核函数与神经网络的一些思考、文本预处理tricks、不均衡文本分类问题、多标签分类问题、tensorflow常用tricks、噪声对比估算与负采样等文章&#xff0c;结果…

谷歌发布端到端AI平台,还有用于视频和表格的AutoML、文档理解API等多款工具

谷歌又有了大动作。在大洋彼岸的谷歌Cloud Next conference大会上&#xff0c;谷歌一口气发布了多款AI新品和工具&#xff0c;主要包括&#xff1a; 端到端的AI平台 用于处理视频和表格数据的AutoML Tables和AutoML Video 文档理解API 联络中心AI 视觉产品搜索 对于开发者…

跨性别,你所不知道的事

今晚原计划在订阅号里推送南溪妹子前几天录制的跨性别科普视频&#xff0c;没想到今天收到南溪的私信&#xff0c;说不做科普了&#xff0c;还是算了吧。急忙去了解了一下原因 (http://www.zhihu.com/pin/963101597957644288) &#xff0c;才知道南溪因这段视频所遭受的无故攻击…