论文浅尝 | Understanding Black-box Predictions via Influence Func

Cite: Koh P W, Liang P. Understanding black-box predictions via influence functions[J]. arXiv preprint arXiv:1703.04730, 2017.

https://arxiv.org/pdf/1703.04730

GitHub项目地址:http://bit.ly/gt-influence


本文使用影响函数(Influence functions)这种工具来研究模型训练样本对模型预测结果的影响,并由此对黑盒模型的预测结果进行解释。

Influence functionsCook以及Weisberg在鲁棒统计(statistics)中引入,它研究了estimator随着其输入分布变化而变化的方式。在模型训练过程中,假设修改一个训练样本的权重后,新的参数变为

640?wx_fmt=png

其中z(x,y),即一个样本

当损失函数L二阶可微且在原始参数附近为凸函数时,根据influence functions理论可得

640?wx_fmt=png

640?wx_fmt=png

其中

640?wx_fmt=png

通过以上结论,可以得到移除一个训练样本对模型参数的影响为

640?wx_fmt=png

而对一个训练样本进行轻微扰动对模型参数的影响为

640?wx_fmt=png

可以看到,在 I_(up,loss)(z, z_test) 中,需要求解Hessian矩阵的逆矩阵,直接计算的复杂度会很高,因此将其计算分解成两部分

640?wx_fmt=png

640?wx_fmt=png

这样可以使痛HVPs(Hessian-vector products)的方法进行计算第一部,然后再计算第二步。具体地,可以使用共轭梯度,直接优化得到H_θ ̂^(-1)v 。此外,还可以使用统计估计方法,计算得到 H_θ ̂^(-1)v 的无偏估计值。

对于非凸函数,可以构造一个近似的二次凸函数进行拟合,然后再对这个凸函数应用influencefunctions进行分析处理。一种拟合方式为

640?wx_fmt=png

而对于一些非二次可微函数,例如Hingeloss,可以使用连续可微函数进行近似,例如Smooth Hinge

640?wx_fmt=png

influence functions的结果可以应用到多个场景中对模型进行解释:

1. 理解模型的行为

对比相同样本的修改对不同模型预测的影响可以对模型预测的行为进行解释,文中对比了Inception V3SVM模型在dog-fish图片分类问题中的行为,结果如下

640?wx_fmt=png



svm这种简单的模型依靠更浅层的特征(欧式距离),而Inception V3使用更深层的特征

2. 产生对抗样本

通过不断的修改训练样本来提高预测的误差,可以产生得到对抗样本

。还是在dog-fish图片分类问题,可以得到以下的结果

640?wx_fmt=png



除了以上的用法,influence还可以应用到检测训练集/测试集的一致性,修正错误标签的样本等场景中。

 

本文作者王旦,浙江大学,研究方向是自然理,机器学习。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

转载须知:转载需注明来源“OpenKG.CN”、作者及原文链接。如需修改标题,请注明原标题。

 

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ICLR2020满分论文 | 为什么梯度裁剪能加速模型训练?

一只小狐狸带你解锁 炼丹术&NLP 秘籍作者:苏剑林(来自追一科技,人称“苏神”)前言需要许多时间步计算的循环神经网络,如LSTM、GRU,往往存在梯度爆炸的问题。其目标函数可能存在悬崖一样斜率较大的区域&…

快手高级Java四轮面试题:设计模式+红黑树+Java锁+Redis等

快手Java一面(一个小时十分钟) 1.自我介绍 2.说说B树和B树的区别,优缺点等? 3聊聊Spring,主要IOC等等 4多线程JUC包下的一些常见的类,比如CountDownLatch、Semaphore等 5.锁的概念,锁相关的…

数据结构--跳表SkipList

对单链表查找一个元素的时间复杂度是 O(n)通过对链表建立多级索引的结构,就是跳表,查找任意数据、插入数据、删除数据的时间复杂度均为 O(log n)前提:建立了索引,用空间换时间的思路(每两个节点建立一个索引)索引节点总和 n/2n/4n…

领域词汇知识库的类型、可用资源与构建技术漫谈

词是语言系统中重要的语言单元,词语是开展文本处理的基础,在语义表示上具有比字符更丰富的表达能力。词语具有领域特性,不同的领域具有不同的词汇体系,如军事领域、医疗领域、公共治安领域、金融领域之间存在着很大的差异性。这种…

论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, Jens Lehmann: EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. International Semantic Web Conference (1) 2018: 108-126链接:https://link.springer.com/conten…

百度高级Java三面题目!涵盖JVM +Java锁+分布式等

百度高级Java一面 自我介绍 对象相等的判断,equals方法实现。 Hashcode的作用,与 equal 有什么区别? Java中CAS算法? G1回收器讲一下? HashMap,ConcurrentHashMap与LinkedHashMap的区别 如何在多线程环…

python--从入门到实践--chapter 12 pygame_Alien_Invasion

安装pygame包,把安装好的包copy一份到pycharm工程目录下,不然找不到pygame包 抄一遍书上的代码: settings.py class Settings():def __init__(self):self.screen_width 1200self.screen_height 800self.bg_color (255, 255, 255)self.s…

实时事理学习与搜索平台DemoV1.0正式对外发布

我们团队探索了一种将事件、概念、逻辑、实时学习、多类知识库实时更新串起来的知识服务新模式。一个面向事理的实时学习和搜索系统Demo,取名叫“学迹”,取自“学事理,知行迹”。 项目地址:https://xueji.zhiwenben.com 一、 “学…

卖萌屋算法工程师思维导图part3—深度学习篇

卖萌屋的妹子们(划掉)作者团整理的算法工程师思维导图,求职/自我提升/查漏补缺神器。该手册一共分为数据结构与算法、数学基础、统计机器学习和深度学习四个部分。下面是第三部分深度学习的内容~公众号后台回复【思维导图】获取完整手册&…

论文浅尝 | Zero-Shot Transfer Learning for Event Extraction

事件抽取的目标是在非结构化的文本中确认事件的触发词(Eventtrigger)和参与者(Event argument),并判断触法词的事件类型(Eventtype),判断参与者在事件中的扮演的角色(Arg…

今日头条Java后台Java研发三面题目

最近有同学在优知学院留言区留言是否能发布今日头条的面试题目,这位同学,题目来了哦~ 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁 thread和runnable的区别 AtomicInteger实现原理…

实时事理逻辑知识库(事理图谱)终身学习项目-EventKGNELL(学迹)

EventKGNELL EventKGNELL, event knowlege graph never end learning system, a event-centric knowledge base search system,实时事理逻辑知识库终身学习和事件为核心的知识库搜索项目。包括事件概念抽取、事件因果逻辑抽取、事件数据关联推荐与推理。 项目地址&…

python--从入门到实践--chapter 15 16 17 生成数据/下载数据/web API

1.随机漫步 random_walk.py from random import choice class RandomWalk():def __init__(self, num_points5000):self.num_points num_pointsself.x_value [0]self.y_value [0]def fill_walk(self):while len(self.x_value) < self.num_points:x_direction choice([1…

ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答

一只小狐狸带你解锁 炼丹术&NLP 秘籍作者&#xff1a;舒意恒&#xff08;南京大学硕士生&#xff0c;知识图谱方向&#xff09;背景什么是知识图谱问答&#xff1f;知识图谱&#xff08;KG&#xff09;是一个多关系图&#xff0c;其中包含数以百万计的实体&#xff0c;以及…

论文浅尝 | 基于超平面的时间感知知识图谱嵌入

链接&#xff1a;http://talukdar.net/papers/emnlp2018_HyTE.pdf本文主要关注 KG embedding 中三元组成立的时间有效性问题&#xff0c;比如三元组(Cristiano Ronaldo, playsFor, Manchester United)&#xff0c;其成立的有效时间段是2003年到2009年&#xff0c;这个使三元组有…

Java面试进阶:Dubbo、Zookeeper面试题锦集

Dubbo面试题锦集 1、默认也推荐使用netty框架&#xff0c;还有mina。 2、默认是阻塞的&#xff0c;可以异步调用&#xff0c;没有返回值的可以这么做。 3、推荐使用zookeeper注册中心&#xff0c;还有redis等不推荐。 4、默认使用Hessian序列化&#xff0c;还有Duddo、FastJ…

POJ 1064 分割线缆(二分查找)

题目链接&#xff1a;http://poj.org/problem?id1064 题目大意&#xff1a;多根电缆切成指定段数&#xff08;每段相同长度&#xff09;&#xff0c;求每段线缆的最大长度&#xff08;精确到0.01&#xff09; 这题精度控制是难点&#xff0c;方法很简单&#xff0c;二分查找…

Learning to rank基本算法小结

原文链接&#xff1a;https://zhuanlan.zhihu.com/p/26539920 Learning to rank基本算法小结最近工作中需要调研一下搜索排序相关的方法&#xff0c;这里写一篇水文&#xff0c;总结一下几天下来的调研成果。包括Learning to rank 基本方法Learning to rank 指标介绍LambdaMART…

命名实体识别难在哪?

亚里士多德在《形而上学》中认为&#xff0c;对于存在&#xff0c;最重要的问题&#xff0c;就是给世间万物的存在基于语言来分层和分类。从神说要有光起&#xff0c;到基友给你取了个外号叫狗蛋。你会发现&#xff0c;创造与命名&#xff0c;在历史中往往等同。名字是自我概念…

论文浅尝 | 面向简单知识库问答的模式修正强化策略

链接&#xff1a;http://aclweb.org/anthology/C18-1277知识库问答研究旨在利用结构化事实回答自然语言问题&#xff0c;在网络中&#xff0c;简单问题占据了相当大的比例。本文提出在完成模式抽取和实体链接后&#xff0c;构建一个模式修正机制&#xff0c;从而缓解错误积累问…