学会提问的BERT:端到端地从篇章中构建问答对

星标/置顶小屋,带你解锁

最萌最前沿的NLP、搜索与推荐技术

文 | 苏剑林


机器阅读理解任务,相比不少读者都有所了解了,简单来说就是从给定篇章中寻找给定问题的答案,即“篇章 + 问题 → 答案”这样的流程,笔者之前也写过一些关于阅读理解的文章,比如《基于CNN的阅读理解式问答模型:DGCNN》[1]等。至于问答对构建,则相当于是阅读理解的反任务,即“篇章 → 答案 + 问题”的流程,学术上一般直接叫“问题生成(Question Generation)”,因为大多数情况下,答案的构造相对容易,直接从文中利用规则随机选取即可(虽然这样会产生很多实际不可提问的假答案),所以很多文章都只关心“篇章 + 答案 → 问题”这一步。

本文将带来一次全端到端的“篇章 → 答案 + 问题”实践,包括模型介绍以及基于bert4keras[2]的实现代码,欢迎读者尝试。

效果

输入篇章:世界第二高山峰是乔戈里峰,位于中国境内。
生成问答:世界第二高山峰叫什么名字?   乔戈里峰乔戈利峰是世界第几高峰     第二输入篇章:7月28日,泰国将迎来十世王玛哈·哇集拉隆功国王的68岁诞辰。
生成问答:泰国的十世王是谁     玛哈·哇集拉隆功国王泰国的十世王玛哈·哇集拉隆多少岁?    68岁泰国的玛哈·哇集拉隆功国王的生日是哪一天?    7月28日玛哈·哇集拉隆功国王是哪个国家的     泰国输入篇章:泼水节,亦称宋干节,已有700年的历史,是傣族(中国)、德昂族最盛大的传统节日。
生成问答:泼水节又称为什么     宋干节泼水节是我国哪一民族一年中最盛大的节日?    傣族泼水节有多少年历史了?    700年

思路分析

本文的目标是完全端到端地实现“篇章 → 答案 + 问题”,包括答案的选取也是由模型自动完成,不需要人工规则。其实说起来也很简单,就是用“BERT + UniLM”的方式来构建一个Seq2Seq模型(UniLM的Attention Mask,加上BERT的预训练权重),如果读者还不了解UniLM,欢迎先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》[3]

笔者之前在文章《万能的seq2seq:基于seq2seq的阅读理解问答》[4]中也给出过通过Seq2Seq模型来做阅读理解的实现,即直接用Seq2Seq模型来构建p(答案∣篇章,问题),图示如下:

▲用Seq2Seq的思路做阅读理解

事实上,在上述模型的基础上稍微改动一下,将问题也列入生成的目标之中,就可以实现问答对生成了,即模型变为p(问题,答案∣篇章),如下图:

▲稍微修改一下,用来做问答对生成

但是,直觉上不难想到“篇章 → 答案”、“篇章 + 答案 → 问题”的难度应该是低于“篇章 + 问题 → 答案”的,所以我们将问题和答案的生成顺序调换一下,变为p(答案,问题∣篇章),最终的效果会更好:

▲先生成答案,再生成问题,效果更好些

实现分析

模型就介绍到这里了,其实也没什么好说的,就是确定好哪些是输入、哪些是输出,然后“BERT + UniLM”套上去就行了。下面是笔者的参考实现[5]

task_question_answer_generation_by_seq2seq.py

这里值得讨论的是解码的思路。一般的Seq2Seq模型,解码到一个[SEP]就结束了,而本文的模型需要解码到两个[SEP]才能结束,截止到第一个[SEP]的是答案,而两个[SEP]之间的则是问题。理论上来说,从给定篇章中我们可以构建很多问答对,换句话说目标不是唯一的,所以我们不能用Beam Search之类的确定性解码算法,而是要用随机解码算法(相关概念可以参考《如何应对Seq2Seq中的“根本停不下来”问题?》[6]中的“解码算法”一节)。

但问题是,如果完全使用随机解码算法,那么生成的问题会过于“天马行空”,也就是可能会出现一些跟篇章无关的内容,比如篇章是“我国火星探测器天问一号发射成功”,生成的问题可能是“我国第一颗人造卫星是什么”,虽然相关,但是过于发散了。所以,这里建议使用一个折中的策略:用随机解码来生成答案,然后用确定性解码来生成问题,这样能尽量保证问题的可靠性。当然,如果读者更关心生成问题的多样性,那么全部使用随机解码也行,反正就自己调试啦。

读者还需要注意的是,上述参考脚本中并没有对答案进行约束,那么生成的答案可能并不是篇章中的片段。毕竟这只是个参考实现,离实用还有一定距离,请有兴趣的读者根据自己的需求自行理解和修改代码。此外,由于问答对构建已经完全变成了一个Seq2Seq问题,所以用来提升Seq2Seq性能的技巧都可以用来提高问答对的生成质量,比如之前讨论过的《Seq2Seq中Exposure Bias现象的浅析与对策》[7],这些都交给读者自己尝试了。

文章小结

本文是一次端到端的问答对生成实践,主要是基于“BERT + UniLM”的Seq2Seq模型来直接根据篇章生成答案和问题,并讨论了关于解码的策略。总的来讲,本文的模型没有什么特殊之处,但是因为借助了BERT的预训练权重,最终生成的问答对质量颇有可圈可点之处。


 文末福利 

后台回复关键词入群
加入卖萌屋NLP/IR/Rec与求职讨论群
有顶会审稿人、大厂研究员、知乎大V和妹纸
等你来撩哦~

夕小瑶的卖萌屋

关注&星标小夕,带你解锁AI秘籍

订阅号主页下方「撩一下」有惊喜

参考文献

[1] 基于CNN的阅读理解式问答模型:
DGCNN: https://spaces.ac.cn/archives/5409

[2] bert4keras: 
https://github.com/bojone/bert4keras

[3] 从语言模型到Seq2Seq:Transformer如戏,全靠Mask: 
https://spaces.ac.cn/archives/6933

[4] 万能的seq2seq:基于seq2seq的阅读理解问答: 
https://spaces.ac.cn/archives/7115

[5] task_question_answer_generation_by_seq2seq:
https://github.com/bojone/bert4keras/blob/master/examples/task_question_answer_generation_by_seq2seq.py

[6] 如何应对Seq2Seq中的“根本停不下来”问题?:
https://spaces.ac.cn/archives/7500#%E8%A7%A3%E7%A0%81%E7%AE%97%E6%B3%95

[7] Seq2Seq中Exposure Bias现象的浅析与对策:
 https://spaces.ac.cn/archives/7259

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

玩转算法面试-第四章查找值之leetcod相关笔记

查找问题 4-1,2 两类查找问题 1 查找有无:set 2 查找对应关系:map 常见的四种操作: insert, find, erase, change(map) 例题 leetcode 349 :给定两个数组,…

分治算法(Divide Conquer)

文章目录1. 分治算法思想2. 应用举例2.1 逆序度3. 分治思想处理海量数据1. 分治算法思想 分治算法的核心思想就是,分而治之,将原问题划分成n个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并…

史上最全Java多线程面试60题,含答案大赠送!

【BAT必考系列!多线程60题】 多线程有什么用? 线程和进程的区别是什么? ava实现线程有哪几种方式? 启动线程方法start()和run()有什么区别? 怎么终止一个线程&#…

论文浅尝 | Interaction Embeddings for Prediction and Explanation

本文是我们与苏黎世大学合作的工作,将发表于WSDM2019,这篇工作在知识图谱的表示学习中考虑了实体和关系的交叉交互,并且从预测准确性和可解释性两个方面评估了表示学习结果的好坏。给定知识图谱和一个要预测的三元组的头实体和关系&#xff0…

商汤科技-数据运维工程师-提前批笔试题目汇总

2019年8月19日 问答题1:缺失值数据预处理有哪些方法?https://juejin.im/post/5b5c4e6c6fb9a04f90791e0c 处理缺失值的方法如下:删除记录,数据填补和不处理。主要以数据填补为主。 1 删除记录:该种方法在样本数据量十分…

秋招视频攻略!13个offer,8家SSP的Q神谈算法岗秋招技巧

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术大家还记得几个月前卖萌屋Q神推送的那期《13个offer,8家SSP,谈谈我的秋招经验》吗?据说Q神掌握了影分身的话,一毕业就能年薪600万,咳咳。。。ps&…

分治应用--最近点对问题 POJ 3714

文章目录1. 问题描述2. 解题思路3. 实现代码4. POJ 37141. 问题描述 二维平面上有n个点,如何快速计算出两个距离最近的点对? 2. 解题思路 暴力做法是,每个点与其他点去计算距离,取最小的出来,复杂度O(n2)采用分治算…

Java多线程系列(十):源码剖析AQS的实现原理

在并发编程领域,AQS号称是并发同步组件的基石,很多并发同步组件都是基于AQS实现,所以想掌握好高并发编程,你需要掌握好AQS。 本篇主要通过对AQS的实现原理、数据模型、资源共享方式、获取锁的过程,让你对AQS的整体设计…

玩转二算法课的笔记-第一章

1 问题:对一组数据进行排序 回答:快速排序算法o(NLOGN),错误。 关键词:思考 应该问面试官,这组数据有什么样的特征? 比如;有没有可能包含大量重复的元素? 如果有这个可能的话,三路快…

微软亚洲研究院NLC组招聘实习生!与一线研究员共探NLP前沿与落地!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术MSRA-NLC组招人啦!微软亚洲研究院(MSRA)自然语言计算组(NLC)招收长期实习生一名,与一线研究员共同进行自然语言处理领域的科研项目和落地…

分治应用--万里挑一 找假硬币

文章目录1. 问题描述2. 解题思路3. 代码实现1. 问题描述 n 个硬币中有1枚是假币,真假币唯一的区别是假币重量轻,如何快速找出假币 2. 解题思路 暴力做法,一个一个的称重,O(n)复杂度分治思路 将硬币等分…

Java多线程与并发系列从0到1全部合集,强烈建议收藏!

在过去的时间中,我写过Java多线程与并发的整个系列。 为了方便大家的阅读,也为了让知识更系统化,这里我单独把Java多线程与并发的整个系列一并罗列于此,希望对有用的人有用,也希望能帮助到更多的人。 以下为整个目录&a…

论文浅尝 | 基于图注意力的常识对话生成

OpenKG 祝各位读者新春快乐,猪年吉祥!来源:IJCAI 2018.论文下载地址:https://www.ijcai.org/proceedings/2018/0643.pdf项目源码地址:https://github.com/tuxchow/ccm动机在以前的工作中,对话生成的信息源是…

Facebook、阿里等大佬现身说法,NLP是否被高估了?

NLP (自然语言处理),利用计算机对人类的语言文字进行处理。由于语言文字是人类交流沟通的最基本方式,因此 NLP 也是最典型的 AI 领域之一。NLP 被誉为“人工智能皇冠上的明珠”。这话也许没错,但听起来难免空洞。所以我去实际问了3位从事 NLP…

玩转算法面试-第二章

1 时间复杂度分析 正常处理的数据规模,为了保险起见,可将将上面的数在除以10,防止电脑假死。 空间复杂度分析: 注意问题:递归调用是有空间代价的 3 常见的复杂度分析 翻转的代码: 选择排序的方法&a…

论文笔记(Attentive Recurrent Social Recommendation)

注意力循环社交推荐 原文链接:Attentive Recurrent Social Recommendation, SIGIR’18 原理:将用户的朋友和历史交互项按时间划分,用注意力机制整合各个时段的朋友影响和交互项影响后输入LSTM来学习动态用户向量,动态用户向量与动…

回溯算法(Backtracking Algorithm)之八皇后问题

文章目录1. 回溯算法思想2. 算法应用2.1 八皇后问题1. 回溯算法思想 前面讲过贪心算法并不能保证得到最优解,那怎么得到最优解呢? 回溯思想,有点类似枚举搜索。枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解&am…

最全Java锁详解:独享锁/共享锁+公平锁/非公平锁+乐观锁/悲观锁

在Java并发场景中,会涉及到各种各样的锁,比如:高并发编程系列:4种常用Java线程锁的特点,性能比较、使用场景,这些锁有对应的种类:公平锁,乐观锁,悲观锁等等,这…

论文浅尝 | Generative QA: Learning to Answer the Whole Question

链接: https://openreview.net/forum?idBkx0RjA9tX传统的机器阅读理解的模型都是给定 context 和 question, 找出最有可能回答该 question 的 answer,用概率表示为 p(a|q,c),这其实是一个判别模型。判别模型在大多数任务上可以取得比生成模型更好的准确…

打破BERT天花板:11种花式炼丹术刷爆NLP分类SOTA!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术文 | JayLou娄杰编 | 小轶在2020这个时间节点,对于NLP分类任务,我们的关注重点早已不再是如何构造模型、拘泥于分类模型长什么样子了。如同CV领域当前的重点一样,我们更应该…