报名 | 全国知识图谱与语义计算大会(CCKS 2019)评测任务发布

        

     全国知识图谱与语义计算大会是由中国中文信息学会语言与知识计算专委会定期举办的全国年度学术会议。CCKS 2018吸引了来自学术界和工业界的超800人参加。2019 年全国知识图谱和语义计算大会(www.ccks2019.cn) 将于2019年8月24日至8月27日在杭州召开,CCKS 2019的主题是“知识智能”。

CCKS系列评测旨在为研究人员提供测试知识图谱与语义计算技术、算法、及系统的平台和资源,促进国内知识图谱领域的技术发展,以及学术成果与产业需求的融合和对接。经过前期的评测任务征集和评测组委会筛选,CCKS 2019共设立6个相关主题评测任务,分别是:面向中文电子病历的命名实体识别面向中文短文本的实体链指任务人物关系抽取面向金融领域的事件主体抽取公众公司公告信息抽取以及开放领域的中文问答专委会为每个任务前三名设立奖金并颁发证书(第一名5000元,第二名3000元,第三名2000元),同时组委会将针对不同任务特别评选“创新技术奖”(每一任务至多一项,奖金:5000元),专门用于鼓励创新性技术的使用。

一、任务简介

任务一:面向中文电子病历的命名实体识别

本任务是CCKS围绕中文电子病历语义化开展的系列评测的一个延续,在CCKS 2017,2018医疗命名实体识别评测任务的基础上进行了延伸和拓展。

本任务包括两个子任务:1)医疗命名实体识别:由于国内没有公开可获得的面向中文电子病历医疗实体识别数据集,本年度保留了医疗命名实体识别任务,对2017年度数据集做了修订,并随任务一同发布。2)医疗实体及属性抽取(跨院迁移):在医疗实体识别的基础上,对预定义实体属性进行抽取。本任务为迁移学习任务,即在只提供目标场景少量标注数据的情况下,通过其他场景的标注数据及非标注数据进行目标场景的识别任务。

任务组织者:

张江涛(清华大学知识工程实验室)

陈阳(医渡云(北京)技术有限公司)

汤步洲(哈尔滨工业大学(深圳))

任务联系人:

张江涛:zhang-jt13@tsinghua.org.cn

陈  阳:yang.chen@yiducloud.cn­

任务二:面向中文短文本的实体链指任务

本评测任务为面向中文短文本的实体识别与链指,简称ERL(Entity Recognition and Linking)。即对于给定的一个中文短文本(如搜索Query、微博、用户对话内容、文章标题等),ERL系统会识别其中的实体,并与给定知识库中的对应实体进行关联。ERL任务过程中需要进行实体识别等子任务,这些子任务的训练可以使用额外的资源。  

传统的实体链指任务主要是针对长文档,长文档拥有在写的上下文信息能辅助实体的歧义消解并完成链指。相比之下,针对中文短文本的实体链指存在很大的挑战,主要原因如下:(1)口语化严重,导致实体歧义消解困难;(2)短文本上下文语境不丰富,须对上下文语境进行精准理解;(3)相比英文,中文由于语言自身的特点,在短文本的链指问题上更有挑战。

任务组织者:

汪琦(百度) wangqi31@baidu.com

冯知凡(百度)fengzhifan@baidu.com

张扬(百度) zhangyang08@baidu.com

任务联系人:

汪琦:wangqi31@baidu.com 

任务三:人物关系抽取

关系抽取(Relation Extraction)是信息抽取的一个重要子任务,其任务是从文本内容中找出给定实体对之间的语义关系,是智能问答、信息检索等智能应用的重要基础,和知识图谱的构建有着密切的联系。

在本次任务中,我们重点关注人物之间的关系抽取研究,简称IPRE(Inter-Personal Relationship Extraction)。给定一组人物实体对和包含该实体对的句子,找出给定实体对在已知关系表中的关系。

任务组织者:

陈文亮(苏州大学)

邵  浩 (狗尾草智能科技)

任务联系人:

王海涛:wanghaitao.mail@foxmail.com

任务四:面向金融领域的事件主体抽取

“事件识别”是舆情监控领域和金融领域的重要任务之一,“事件”在金融领域是投资分析,资产管理的重要决策参考。“事件识别”的复杂性在于事件类型和事件主体的判断,比如“公司A产品出现添加剂,其下属子公司B和公司C遭到了调查”,对于“产品出现问题”事件类型,该句中事件主体是“公司A”,而不是“公司B”或“公司C”。我们称发生特定事件类型的主体成为事件主体,本任务中事件主体范围限定为:公司、任务、机构。事件类型范围确定为:产品出现问题、高管减持、违法违规…

本次评测任务的主要目标是从真实的新闻语料中,抽取特定事件类型的主体。即给定一段文本T,和文本所属的事件类型S,从文本T中抽取指定事件类型S的事件主体。

任务负责人:

王太峰(蚂蚁金服)

陈玉博(中科院自动化所)

黄敬(蚂蚁金服)

任务联系人:

王太峰:taifeng.wang@alibaba-inc.com

陈玉博:yubo.chen@nlpr.ia.ac.cn

任务五:公众公司公告信息抽取

随着金融科技的发展和全球资本市场的不断扩大,在金融领域,每一天都有海量的数据产生,而与之形成强烈对比的是有限的人力以及人脑所能处理信息的极限能力。因此,依靠传统的人工方式已经无法应对投研分析、风险控制、金融监管和事件关联等需求,而亟需引入新的技术来提高信息处理效率,包括大数据分析、自然语言处理、知识图谱等技术,都已经开始被积极用于金融分析和金融监管领域。在监管方面,每一家公众公司都具有相关信息披露义务,由此也产生了大量的公告阅读和信息抽取需求。据不完全统计,以沪深股市为例,2017年共披露公告44万余篇,2018年共27万余篇,并且随着上市公司数量的增加这一数字也在逐年增加。每年3月底、4月底、8月底、10月底为定期报告披露高峰期,最多的一天所发布公告达 10297 篇。

本次评测的主要目标是针对公告文件(均以PDF或扫描件的方式发布)中的信息抽取。作为知识图谱构建的基础,结构化数据是必不可少的。由此,如何通过自动化的技术来从各类公告中抽取信息,将非结构化数据转化为结构化数据是知识图谱领域所面临的一大挑战。此次评测将包括两个任务:公众公司定期报告表格中的信息点提取和文本段落中的信息点提取。

任务组织者:

漆桂林(东南大学认知智能研究所)

王   萌(东南大学认知智能研究所)

任务联系人:

漆桂林:gqi@seu.edu.cn

王   萌:meng.wang@seu.edu.cn

任务六:开放领域的中文问答

本评测任务为基于开放领域知识库的中文问答,简称COQA (Chinese Open-domain Question Answering)。即对于给定的一句中文问题,问答系统从给定知识库中选择若干实体或属性值作为该问题的答案。问题均为客观事实型,不包含主观因素。理解并回答问题的过程中可能需要进行实体识别、关系抽取等子任务。这些子任务的训练可以使用额外的资源,但是最终的答案必须来自给定的知识库。 

任务组织者:

邹磊(北京大学计算机技术研究所)

胡森(北京大学计算机技术研究所)

林金曙(恒生电子股份有限公司)

陈华华(恒生电子股份有限公司)

任务联系人:

胡森:husen@pku.edu.cn 

二、报名方式

本次评测采用邮件报名的方式,邮件标题为:“CCKS2019-任务名称-参赛单位”,例如:“CCKS2019-面向中文电子病历的命名实体识别-清华大学”;邮件内容为:“参赛队名,参赛队长信息(姓名,邮箱,联系电话),参赛单位名称”。请参加评测的队伍发送报名邮件至相应邮箱:

任务一、面向中文电子病历的命名实体识别(参赛队可同时选择两个子任务参赛,也可选择任意一个子任务单独参赛,请报名时注明参加哪一个子任务)

zhang-jt13@tsinghua.org.cn;

yang.chen@yiducloud.cn­

任务二、面向中文短文本的实体链指:

wangqi31@baidu.com

任务三、人物关系抽取:

wanghaitao.mail@foxmail.com

任务四、面向金融领域的事件主体抽取:

taifeng.wang@alibaba-inc.com;

yubo.chen@nlpr.ia.ac.cn

任务五、公众公司公告信息抽取:

gqi@seu.edu.cn

meng.wang@seu.edu.cn

任务六、开放领域的中文问答

husen@pku.edu.cn

三、重要日期

  • 评测任务发布:3月20日

  • 报名时间:3月20日—7月10日

  • 训练及验证数据发布:4月1日-4月20日

  • 测试数据发布:7月20日

  • 提交测试结果:7月30日

  • 评测论文提交:8月15日

  • 会议日期:8月24日—27日

四、评测主席

韩先培,中国科学院软件研究所(hanxianpei@126.com)

王志春,北京师范大学(zcwang@bnu.edu.cn)


更多信息,请点击阅读原文,进入会议官网评测页面。



OpenKG


开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480045.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UML是什么?UML常用图以及建模工具有哪些?

“ 在做项目设计方案的时候,理解为需求后,我们都会做技术设计方案,这个时候就需要用到UML建模,涉及到UML常用图形以及工具画图,以下我会详细介绍UML图形和我个人推荐的UML建模工具。 UML即Unified Model Language&am…

炼丹必备!推荐一个超级好用的机器学习云平台

矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验,和高性价比的自建GPU集群资源。高性价比矩池云拥有很高的性价比,其的计费方式主要分为按时租与按周/月租。按时租用采用的是分钟级的实时计费模式,满足了…

直通BAT必考题系列:深入详解JVM内存模型与JVM参数详细配置

JVM基本是BAT面试必考的内容,今天我们先从JVM内存模型开启详解整个JVM系列,希望看完整个系列后,可以轻松通过BAT关于JVM的考核。 BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾回收算法 3.JVM垃圾回收器 4.JVM参数详解 5.JVM性能调优 JV…

论文浅尝 | 基于平行新闻的Bootstrapping关系抽取

笔记整理:吴锐,东南大学大四本科生,研究方向为自然语言处理。Citation:Michael Glass, K. B. . (2012). Bootstrapping relation extraction using parallel news articles. Retrieved from https://pdfs.semanticscholar.org/bfa…

动态规划应用--最长递增子序列 LeetCode 300

文章目录1. 问题描述2. 解题思路2.1 动态规划2.2 二分查找1. 问题描述 有一个数字序列包含n个不同的数字,如何求出这个序列中的最长递增子序列长度?比如2,9,3,6,5,1,7这样一组数字序…

论文浅尝 | 5 篇顶会论文带你了解知识图谱最新研究进展

本文转载自公众号:PaperWeekly。精选 5 篇来自 ICLR 2019、WSDM 2019、EMNLP 2018、CIKM 2018和IJCAI 2018 的知识图谱相关工作,带你快速了解知识图谱领域最新研究进展。WSDM 2019■ 论文解读 | 张文,浙江大学在读博士,研究方向为…

LeetCode 53. 最大子序和(动态规划)

文章目录1. 题目描述2. 解题2.1 暴力求解2.2 动态规划1. 题目描述 题目链接:https://leetcode-cn.com/problems/maximum-subarray/ 《剑指Offer》同题:面试题42. 连续子数组的最大和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组…

java程序员的发展之路和职业规划

在互联网做技术的朋友,往往没有足够的重视,职业规划其实一点都不虚,而是一件非常实在的事情,如果你不是每次碰墙再反思职业规划,而是提前3年左右作出下一步的规划,你早已经走出了一条属于自己的路。 以下是…

图Graph--拓扑排序(Topological Sorting)

文章目录1. 拓扑排序2. 算法实现2.1 Kahn算法2.2 DFS算法2.3 时间复杂度3. 应用4. 类似题目练习一个项目往往会包含很多代码源文件。编译器在编译整个项目时,需按照依赖关系,依次编译每个源文件。比如,A.cpp依赖B.cpp,那在编译时&…

SIGIR20最佳论文:通往公平、公正的Learning to Rank!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 机智的叉烧编 | 兔子酱大家好,我是叉烧。感谢卖萌屋再次给我机会在这里分享~SIGIR2020 的 best paper 终于出炉,这次获奖论文是 Controlling Fairness and Bias in Dynamic Learn…

论文浅尝 | 基于属性嵌入的知识图谱间实体对齐方法

笔记整理:张清恒,南京大学计算机科学与技术系,硕士研究生。论文链接:https://people.eng.unimelb.edu.au/jianzhongq/papers/AAAI2019_EntityAlignment.pdf发表会议:AAAI 2019摘要近来,针对跨知识图谱&…

一篇文章了解架构师能力模型

每一个技术人都有着一个架构师的梦,希望自己有朝一日能登上技术之巅,以下结合我自己13年的从业经验,分别从架构师进阶之路、架构师能力模型(这里是亮点)、架构师技能树、架构师业务技能树谈起,完整的剖析一…

首篇严肃的“BERT学”研究,40+论文对比,解读 BERT 工作原理

BERT解读(论文 TensorFlow源码):https://blog.csdn.net/Magical_Bubble/article/details/89514057?depth_1- 解读ALBERT: https://blog.csdn.net/weixin_37947156/article/details/101529943 一文揭开ALBERT的神秘面纱&#…

图Graph--最短路径算法(Shortest Path Algorithm)

文章目录1. 算法解析BFS,DFS 这两种算法主要是针对无权图的搜索算法。针对有权图,图中的每条边都有权重,如何计算两点之间的最短路径(经过的边的权重和最小)呢?像Google地图、百度地图、高德地图这样的地图软件&#x…

BAT架构师进阶:大型网站架构书籍推荐

“ 书籍推荐分为如下: 大型网站架构系列 分布式系统系列 BAT技术系列 架构设计系列 一:大型网站架构系列 第一本:《大型网站技术架构:核心原理与案例分析》 这本书主要从大型网站架构的特点,架构目标&#xff08…

FLAT:中文NER屠榜之作

本文转载自公众号“夕小瑶的卖萌屋”,专业带逛互联网算法圈的神操作 -----》我是传送门 关注后,回复以下口令: 回复【789】 :领取深度学习全栈手册(含NLP、CV海量综述、必刷论文解读) 回复【入群】&#xf…

Tensorflow实现LSTM详解

关于什么是 LSTM 我就不详细阐述了,吴恩达老师视频课里面讲的很好,我大概记录了课上的内容在吴恩达《序列模型》笔记一,网上也有很多写的好的解释,比如:LSTM入门、理解LSTM网络 然而,理解挺简单&#xff0…

论文浅尝 | 一个模型解决所有问题:实体和事件的神经联合模型

笔记整理:康矫健,浙江大学计算机科学与技术系,硕士研究生。论文链接:https://arxiv.org/pdf/1812.00195.pdf发表会议:AAAI 2019摘要 近来,针对事件抽取的工作大都集中在预测事件的triggers和arguments r…

AutoPep8-----Pycharm自动排版工具

查找pycharm中的external tool的步骤: https://jingyan.baidu.com/article/84b4f565bd39a060f6da3211.html 今天从 PyCharm 入手,写一些可以明显改善开发效率的使用技巧,一旦学会,受用一生。以下代码演示是在 Mac 环境下&#xf…

阿里P8架构师谈:java架构师面试技能24全点

1,JAVA基础扎实,理解io、多线程、集合等基础框架,对JVM原理有一定的了解,熟悉常见类库,常见java api不仅会用更能知其所以然; 2,对Spring,MyBatis/Hibernate,Struts2,SpringMVC等开源框架熟悉并且了解到它的基本原理和…