详解凸优化、图神经网络、强化学习、贝叶斯方法等四大主题

加入AI行业拿到高薪仅仅是职业生涯的开始。现阶段AI人才结构在不断升级,对AI人才的要求也不断升高,如果对自己没有很高的要求,其实很容易被快速发展的趋势所淘汰。

为了迎合时代的需求,我们去年推出了《机器学习高端训练营》班。这个训练营的目的很简单:想培养更多高端的人才,帮助那些即将或者目前从事科研的朋友,同时帮助已从事AI行业的提高技术深度。 

在本期训练营(第四期)中我们对内容做了大幅度的更新,一方面新增了对前沿主题的讲解如图神经网络(GCN,GAT等),另外一方面对核心部分(如凸优化、强化学习)加大了对理论层面上的深度除此之外,也会包含研方法论、元学习、解释性、Fair learning等系列主题。目前在全网上应该找不到类似体系化的课程。课程仍然采用全程直播授课模式。

那什么样的人适合来参加高阶班呢?

  • 从事AI行业多年,但技术上总感觉不够深入,感觉在技术上遇到了瓶颈; 

  • 停留在使用模型/工具上,很难基于业务场景来提出新的模型; 

  • 对于机器学习背后的优化理论、前沿的技术不够深入;

  • 计划从事尖端的科研、研究工作、申请AI领域研究生、博士生; 

  • 打算进入最顶尖的AI公司比如Google,Facebook,Amazon, 阿里,头条等;

  • 读ICML,IJCAI等会议文章比较吃力,似懂非懂感觉,无法把每个细节理解透;

01 课程大纲

第一部分:凸优化与机器学习

第一周:凸优化介绍

  • 从优化角度理解机器学习

  • 优化技术的重要性

  • 常见的凸优化问题

  • 线性规划以及Simplex Method

  • Two-Stage LP

  • 案例:运输问题讲解

 

 

第二周:凸函数讲解

  • 凸集的判断

  • First-Order Convexity

  • Second-order Convexity

  • Operations Preserve Convexity

  • 二次规划问题(QP)

  • 案例:最小二乘问题

  • 项目作业:股票投资组合优化

 

第三周:凸优化问题

  • 常见的凸优化问题类别

  • 半定规划问题

  • 几何规划问题

  • 非凸函数的优化

  • 松弛化(Relaxation)

  • 整数规划(Integer Programming)

  • 案例:打车中的匹配问题

 

第四周:对偶(Duality)

  • 拉格朗日对偶函数

  • 对偶的几何意义

  • Weak and Strong Duality

  • KKT条件

  • LP, QP, SDP的对偶问题

  • 案例:经典模型的对偶推导及实现

  • 对偶的其他应用

第五周:优化技术

  • 一阶与二阶优化技术

  • Gradient Descent

  • Subgradient Method

  • Proximal Gradient Descent

  • Projected Gradient Descent

  • SGD与收敛

  • Newton's Method

  • Quasi-Newton's Method

第二部分 图神经网络

第六周: 数学基础

  • 向量空间和图论基础

  • Inner Product, Hilbert Space

  • Eigenfunctions, Eigenvalue

  • 傅里叶变化

  • 卷积操作

  • Time Domain, Spectral Domain

  • Laplacian, Graph Laplacian

 

第七周:谱域的图神经网络

  • 卷积神经网络回归

  • 卷积操作的数学意义

  • Graph Convolution

  • Graph Filter

  • ChebNet

  • CayleyNet

  • GCN

  • Graph Pooling

  • 案例:基于GCN的推荐

 

第八周:空间域的图神经网络

  • Spatial Convolution

  • Mixture Model Network (MoNet)

  • 注意力机制

  • Graph Attention Network(GAT)

  • Edge Convolution

  • 空间域与谱域的比较

  • 项目作业:基于图神经网络的链路预测

 

第九周:图神经网络改进与应用

  • 拓展1:   Relative Position与图神经网络

  • 拓展2:融入Edge特征:Edge GCN

  • 拓展3:图神经网络与知识图谱: Knowledge GCN

  • 拓展4:姿势识别:ST-GCN

  • 案例:基于图的文本分类

  • 案例:基于图的阅读理解

第三部分 强化学习

第十周:强化学习基础

  • Markov Decision Process

  • Bellman Equation

  • 三种方法:Value,Policy,Model-Based

  • Value-Based Approach: Q-learning

  • Policy-Based Approach: SARSA

第十一周:Multi-Armed Bandits

  • Multi-Armed bandits

  • Epsilon-Greedy

  • Upper Confidence Bound (UCB)

  • Contextual UCB

  • LinUCB & Kernel UCB

  • 案例:Bandits在推荐系统的应用案例

 

第十二周:路径规划

  • Monte-Carlo Tree Search

  • N-step learning

  • Approximation

  • Reward Shaping

  • 结合深度学习:Deep RL

  • 项目作业:强化学习在游戏中的应用案例

 

第十三周: 自然语言处理中的RL

  • Seq2seq模型的问题

  • 结合Evaluation Metric的自定义loss

  • 结合aspect的自定义loss

  • 不同RL模型与seq2seq模型的结合

  • 案例:基于RL的文本生成

第四部分 贝叶斯方法

第十四周:贝叶斯方法论简介

  • 贝叶斯定理

  • 从MLE, MAP到贝叶斯估计

  • 集成模型与贝叶斯方法比较

  • 计算上的Intractiblity

  • MCMC与变分法简介

  • 贝叶斯线性回归

  • 贝叶斯神经网络

  • 案例:基于Bayesian-LSTM的命名实体识别

 

 

第十五周:主题模型

  • 生成模型与判别模型

  • 隐变量模型

  • 贝叶斯中Prior的重要性

  • 狄利克雷分布、多项式分布

  • LDA的生成过程

  • LDA中的参数与隐变量

  • Supervised LDA

  • Dynamic LDA

  • LDA的其他变种

  • 项目作业:LDA的基础上修改并搭建无监督情感分析模型

 

 

第十六周:MCMC方法

  • Detailed Balance

  • 对于LDA的吉布斯采样

  • 对于LDA的Collapsed吉布斯采样

  • Metropolis Hasting

  • Importance Sampling

  • Rejection Sampling

  • 大规模分布式MCMC

  • 大数据与SGLD

  • 案例:基于分布式的LDA训练

 

 

第十七周:变分法(Variational Method)

  • 变分法核心思想

  • KL散度与ELBo的推导

  • Mean-Field变分法

  • EM算法

  • LDA的变分法推导

  • 大数据与SVI

  • 变分法与MCMC的比较

  • Variational Autoencoder

  • Probabilistic Programming

  • 案例:使用概率编程工具来训练贝叶斯模型

第十八周:其他前沿主题

  • 模型的可解释性

  • 解释CNN模型

  • 解释序列模型

  • Meta Learing

  • Fair Learning

  • 技术前瞻

●●●

课程其他的细节可以联系课程顾问来获取

添加课程顾问小姐姐微信

报名、课程咨询

????????????

02 部分案例和项目

运输优化问题:在运筹学以及优化领域最为经典的问题之一,类似的思想广泛应用在仓库优化,匹配等问题上。

涉及到的知识点:

  • 线性回归以及优化实现

  • Two-Stage随机线性规划一下优化实现

打车中的路径规划问题:我们几乎每天都在使用打车软件或者外卖软件。对于这些应用来讲,核心算法应用就是乘客和车辆的匹配。

涉及到的知识点

  • Mixed Integer Linear Programming

  • 提供approximation bounds

经典机器学习模型的对偶推导及实现:通过此练习,更深入理解机器学习模型以及对偶的作用。

涉及到的知识点:

  • SVM,LP等模型

  • 对偶技术

  • KKT条件

基于图神经网络的文本分类:当使用语法分析工具处理文本之后,一段文本便可以成为一个图,接下来就可以使用图卷积神经网络来做后续的分类工作

涉及到的知识点:

  • 语法分析

  • 图神经网络

基于图神经网络的阅读理解:一般的阅读需要让机器阅读多个文章并对提出的问题给出答案。在阅读理解中抽取关键的实体和关系变得很重要,这些实体和关系可以用来构造一个图。

涉及到的知识点:

  • 命名识别,关系抽取

  • 图神经网络

  • Heterogeneous Graph

Bandits在推荐系统的应用案例:Bandits应用在顺序决策问题的应用中有易于实现、计算效率高、解决冷启动问题、数据标注相对要求不高(一般只需部分标注作为reward,如用户点击)等优点。本案例讲解bandits如何应用在新闻推荐的系统中做基于内容的推荐。

    涉及到的知识点:

  • Exploration & Exploitation

  • Epsilon Greedy

  • Upper Confidential Bounder

  • LineUCB

使用概率编程工具来训练贝叶斯模型:类似于Pytorch,Tensorflow,概率编程工具提供了对贝叶斯模型的自动学习,我们以LDA等模型为例来说明这些工具的使用。 

涉及到的知识点:

  • 概率编程

  • 主题模型

  • MCMC和变分法

股票投资组合优化:在投资组合优化中,我们需要根据用户的风险承受能力来设计并组合资产。在本项目中,我们试着在二次规划的框架下做一些必要的修改如加入必要的限制条件、必要的正则来控制组合的稀疏性、加入投资中的先验等信息,最后根据预先定义好的评估标准来引导模型的学习

涉及到的知识点:

  • 二次规划

  • 不同的正则使用

  • 基于限制条件的优化

  • 先验的引入

课程其他的细节可以联系课程顾问来获取

添加课程顾问小姐姐微信

报名、课程咨询

????????????

03 授课导师

李文哲:贪心科技创始人兼CEO,人工智能和知识图谱领域专家,曾任金融科技独角兽公司的首席科学家、美国亚马逊的高级工程师,先后负责过聊天机器人、量化交易、自适应教育、金融知识图谱等项目,并在AAAI、KDD、AISTATS等顶会上发表过15篇以上论文,并荣获IAAI,IPDPS的最佳论文奖,多次出席行业峰会发表演讲。分别在USC, TAMU,南开攻读博士、硕士和本科。

 

杨栋:香港城市大学博士, UC Merced博士后,主要从事于机器学习,图卷积,图嵌入的研究。先后在ECCV, Trans on Cybernetics, Trans on NSE, INDIN等国际顶会及期刊上发表过数篇论文。担任过贪心学院高阶课程的讲师,获得了学员一致的好评。 

04直播授课,现场推导演示

区别于劣质的PPT讲解,导师全程现场推导,让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

▲源自:LDA模型讲解


▲源自:Convex Optimization 讲解

▲源自:Convergence Analysis 讲解

05 课程安排(以前两周为例)

06 课程适合谁?

大学生

  • 计算机相关专业的本科/硕士/博士生,需要具备一定的机器学习基础

  • 希望能够深入AI领域,为科研或者出国做准备

  • 想在步入职场前,深入AI领域,并把自己培养成T字形人才

在职人士

  • 目前从事AI相关的项目工作,具有良好的机器学习基础

  • 希望打破技术上的天花板,能够有能力去做模型上的创新

  • 以后往资深工程师、研究员、科学家的职业路径发展

 

07 报名须知

1、本课程为收费教学。

2、本期仅招收剩余名额有限

3、品质保障!正式开课后7天内,无条件全额退款。

4、学习本课程需要具备一定的机器学习基础。

●●●

课程其他的细节可以联系课程顾问来获取

添加课程顾问小姐姐微信

报名、课程咨询

????????????

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479671.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可扩展的TextView,ExpandableTextView与Scroller类的使用

转载时请注明出处,尊重他人的劳动成果,谢谢。 废话不多说,先上图演示下成果(图有些丑,别见怪): 最近一直在研究Scroller类的使用方法,看了很多遍别人的例子总是感觉不得要领,最后还是自己实践…

消息中间件系列(三):主流的消息队列中间件有哪些?

消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。 当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka&#…

谷歌40人发表59页长文:为何真实场景中ML模型表现不好?

文 | 白鹡鸰编 | 夕小瑶大家好哇,我是上周那篇《NLP太卷了,我去研究蛋白质了》的漫画作者白鹡鸰~前不久,在卖萌屋NLP群里默默潜水的白鹡鸰被群友提到的一篇Google几天前放出的59页超长论文炸得飞了起来。来,大家来感受一下气势浩大…

圆形进度条以及百分率指示器 Scroller类的练习

转载时请注明出处,尊重他人的劳动成果,谢谢。 先附上效果图: 这个控件是动态加载到75%的,主要我忘了怎么做动态图,就先放一个静态图在这里表示表示。旁边这个没有没有喜欢的?有想知道的 我可以告诉答案。…

阿里P8架构师谈:从单体架构、到SOA、再到微服务的架构设计详解

本文涉及的内容以及知识点如下: 1、单体架构 2、单体架构的拆分 3、SOA与微服务的区别 4、微服务的优缺点 5、微服务的消息 6、服务集成 7、数据的去中心化 单体架构 Web应用程序发展的早期,大部分web工程是将所有的功能模块(service…

我拿乐谱训了个语言模型!

文 | 花椒最近在刷EMNLP论文的时候发现一篇非常有趣的论文《Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in Language Models》,来自斯坦福大学NLP组。论文有趣的发现是让语言模型先在乐谱上进行训练,再在自然语言上训…

LeetCode 146. LRU缓存机制(哈希链表)

文章目录1. 题目信息2. 解题2.1 手动实现list2.2 使用内置list1. 题目信息 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。 获取数据 get(key) - 如果密钥 (key) 存在于缓…

微服务系列:服务注册与发现的实现原理、及实现优劣势比较

服务注册与发现的来源 首先,服务注册与发现是来自于微服务架构的产物。 在传统的服务架构中,服务的规模处于运维人员的可控范围内。当部署服务的多个节点时,一般使用静态配置的方式实现服务信息的设定。而在微服务应用中,服务实例…

EMNLP 2020论文分析:知识图谱增强语言模型或是未来的发展趋势!

文 | Michael Galkin源 | AI科技评论在EMNLP 2020的论文投递中,知识图谱的研究热度不减,并成为继续推动NLP发展的重要动力之一。在EMNLP 2020中,知识图谱领域有了哪些最新研究进展呢?作者从中选出了30篇文章,对未来2-3…

如何通过反射来解决AlertDialog标题由于字数过多显示不全的问题

转载前请标明出处:http://blog.csdn.net/sahadev_ 先上一下示例图: 这是默认状态下:这是通过反射后修改的结果: 在解决这个问题之前首先需要了解一下AlertDialog的基本构造,所以先从源码看起: 想要知道为什么显示不…

LeetCode 292. Nim 游戏

文章目录1. 题目信息2. 解题1. 题目信息 你和你的朋友,两个人一起玩 Nim 游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。你作为先手。 你们是聪明人,每一步都是最优解。 编写一个函数…

配送A/B评估体系建设实践

2019年5月6日,美团点评正式推出新品牌“美团配送”,发布了美团配送新愿景:“每天完成一亿次值得信赖的配送服务,成为不可或缺的生活基础设施。”现在,美团配送已经服务于全国400多万商家和4亿多用户,覆盖28…

ListView原理简单介绍(着重介绍getView被调用的一系列过程)

今天出去面试,被面试官问到一个问题,说是如果使用 LayoutInflate.inflate(int resource, ViewGroup root, boolean attachToRoot);这个方法与AbsListView的实现类结合使用的话,会出现什么问题,先看简单的使用过程: Ove…

一人之力,刷爆三路榜单!信息抽取竞赛夺冠经验分享

文 | JayLou娄杰在现如今的NLP竞赛中,信息抽取(IE)任务已占据半壁江山。来,让我们看看今年的一些IE竞赛都有啥:看到如此众多的IE竞赛,心动的JayJay抽空参加了CHIP2020(中国健康信息处理大会&…

pkuseg:一个多领域中文分词工具包

pkuseg简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点编译和安装各类分词工具包的性能对比使用方式相关论文作者常见问题及解答主要亮点 pkuseg具有如下几个特点: 多领域分词。不同于以往的通用中文分词工具,此…

积木Sketch Plugin:设计同学的贴心搭档

| A consistent experience is a better experience.——Mark Eberman | 一致的体验是更好的体验。——Mark Eberman 《摘自设计师的16句名言》 背景 1.UI一致性项目 积木(Tangram)Sketch插件源于美团外卖UI的一致性项目,该项目自2019年5月份…

简单讲述一下Intent的传值过程

昨晚带女友Android入门,她本是照着一本书敲得,可以运行,后来她自己凭思维自己写了一个,然后出现了值没有传过来的问题,然后简单的了解了一下Intent是如何传递数据的。 我们的例子是这样的: 由A Activity通…

何恺明团队:stop gradient是孪生网络对比学习成功的关键

文 | Happy源 | 极市平台本文是FAIR的陈鑫磊&何恺明大神在无监督学习领域又一力作,提出了一种非常简单的表达学习机制用于避免表达学习中的“崩溃”问题,从理论与实验角度证实了所提方法的有效性;与此同时,还侧面证实了对比学…

美团无人配送CVPR2020论文CenterMask解读

计算机视觉技术是实现自动驾驶的重要部分,美团无人配送团队长期在该领域进行着积极的探索。不久前,高精地图组提出的CenterMask图像实例分割算法被CVPR2020收录,本文将对该方法进行介绍。 CVPR的全称是IEEE Conference on Computer Vision an…

如何使用ListView实现一个带有网络请求,解析,分页,缓存的公共的List页面来大大的提高工作效率

在平常的开发中经常会有很多列表页面,每做一个列表页就需要创建这个布局文件那个Adapter适配器文件等等一大堆与之相关的附属的不必要的冗余文件。如果版本更新迭代比较频繁,如此以往,就会使项目工程变得无比庞大臃肿。 如果看过这篇文章或者…