会议交流 | IJCKG 2021 日程表(北京时间)

IJCKG 2021 Program

(All times Beijing Time)





December 6th





Opening

(19:00–19:15)

Chair: Oscar Corcho





Keynote I 

(19:15–20:15)

Chair: Oscar Corcho

Knowledge Graphs: Theory, Applications and Challenges

Ian Horrocks, Professor, University of Oxford





Break

(20:15–20:30)





KGR4XAI Workshop

(20:30–00:00)





December 7th





Session I: Graph-based Learning

(19:00–20:50)

Chair: Xiaowang Zhang

19:00

FedE: Embedding Knowledge Graphs in Federated SettingMingyang Chen, Wen Zhang, Zonggang Yuan, Yantao Jia and Huajun Chenlong

19:20

Knowledge-Based Conversational Recommender Systems Enhanced by Dialogue Policy LearningKeyu Chen and Shiliang Sunlong

19:40

FEED: A Chinese Financial Event Extraction Dataset Constructed by Distant SupervisionGuozheng Li, Peng Wang, Jiafeng Xie, Ruilong Cui and Zhenkai Denglong

20:00

Multi-hop Reasoning Based on Reinforcement Learning and Hyperbolic Knowledge Graph EmbeddingXingchen Zhou, Peng Wang, Qiqing Luo and Zhe Panlong

20:20

Unsupervised Anomaly Detection in Knowledge GraphsAsara Senaratne, Graham Williams and Peter Christenshort

20:25

Improving Knowledge Graph Representation Learning by Structure Contextual Pre-trainingGanqiang Ye, Wen Zhang, Zhen Bi, Chi Man Wong, Chen Hui and Huajun Chenshort

20:30

Explainable Knowledge Reasoning Framework Using Multiple Knowledge Graph EmbeddingMori Kurokawashort

20:35

Q&A for Short Papers (breakout rooms)





Break

(20:50–21:00)





Keynote II 

(21:00–22:00)

Chair: Haofen Wang

Knowledge-oriented Explainable Cognitive Reasoning

Juanzi Li, Professor, Tsinghua University





Break

(22:00–22:20)





Session II: Graph-based Learning 

(22:20–00:00)

Chair: Tianxing Wu

22:20

Knowledge Graph Embedding in E-commerce Applications: Attentive Reasoning, Explanations, and Transferable RulesWen Zhang, Shumin Deng, Mingyang Chen, Liang Wang, Qiang Chen and Huajun Chenlong

22:40

Auto Insurance Knowledge Graph Construction and Its Application to Fraud DetectionLong Zhang, Tianxing Wu, Xiuqi Chen, Bingjie Lu, Chongning Na and Guilin Qilong

23:00

Scaling Usability of ML Analytics with Knowledge Graphs: Exemplified
with A Bosch Welding Case
Baifan Zhou, Dongzhuoran Zhou, Jieying Chen, Yulia Svetashova, Gong Cheng and Evgeny Kharlamovlong

23:20

Fuzzy Search of Knowledge Graph with Link PredictionTakanori Ugaishort

23:25

Normal vs. Adversarial: Salience-based Analysis of Adversarial Samples for Relation ExtractionLuoqiu Li, Xiang Chen, Zhen Bi, Xin Xie, Shumin Deng, Ningyu Zhang, Chuanqi Tan, Mosha Chen and Huajun Chenshort

23:30

Text-Enhanced Question Answering over Knowledge GraphJiaying Tian, Bohan Li, Ye Ji and Jiajun Wushort

23:35

Enhanced Knowledge Graph Embedding for Multi-Task Recommendation via Integrating Attribute Information and High-Order ConnectivityYani Wang, Aoran Li, Ji Zhang and Bohan Lishort

23:40

NePTuNe: Neural Powered Tucker Network for Knowledge Graph CompletionShashank Sonkar, Arzoo Katiyar and Richard Baraniukshort

23:45

Q&A for Short Papers (breakout rooms)





Break 

(00:00–00:20)





Keynote III

(00:20–1:20)

Chair: Aidan Hogan

Distinguishing Graph Neural Networks in terms of their power, and how to choose the right architecture

Juan Reutter, Professor, Pontificia Universidad Católica de Chile





December 8th





Session III: Data, Queries, Semantics

(19:00–20:40)

Chair: Hideaki Takeda

19:00

Extracting Domain-specific Concepts from Large-scale Linked Open DataSatoshi Kume and Kouji Kozakilong

19:20

Improving Low-resource Reading Comprehension via Cross-lingual Transposition RethinkingGaochen Wu, Bin Xu, Yuxin Qin, Weizhou Wang and Geng Wanglong

19:40

ROSE-NER: Robust Semi-supervised Named Entity Recognition on Insufficient Labeled DataHaiyan Chen, Shuwei Yuan and Xiang Zhanglong

20:00

Ontologies of Action and Object in Home Environment towards Injury PreventionSatoshi Nishimura, Shusaku Egami, Takanori Ugai, Mikiko Oono, Koji Kitamura and Ken Fukudashort

20:05

Gene Ranking based on Paths from Phenotypes to Genes on Knowledge GraphAtsuko Yamaguchi, Jae-Moon Shin and Toyofumi Fujiwarashort

20:10

Knowledge Graph Enhanced Community Consensus: a Scenario-based Knowledge Construction on Buddha ImagesAkkharawoot Takhom, Tharathon Utasri, Dhanon Leenoi, Pitchaya Soomjinda, Prachya Boonkwan and Thepchai Supnithishort

20:15

Pre-classification Supporting Reasoning for Document-level Relation ExtractionJiehao Zhao, Guiduo Duan and Tianxi Huangshort

20:20

Automated Reasoning on Machine Learning Model of Legislative Election PredictionYanti Rusmawatishort

20:25

Q&A for Short Papers (breakout rooms)





Break

(20:40–21:00)





Keynote IV

(21:00–22:00)

Chair: Lei Hou

Knowledge Graph and Machine Learning: Three Key Business Needs

Yu Xu, Founder & CEO, TigerGraph





Break

(22:00–22:20)





Session IV: Data, Queries, Semantics

(22:20–00:00)

Chair: TBD

22:20

SOSA-SHACL: Shapes Constraint for the Sensor, Observation, Sample, and Actuator OntologyRui Zhu, Cogan Shimizu, Shirly Stephen, Lu Zhou, Ling Cai, Gengchen Mai, Krzysztof Janowicz, Mark Schildhauer and Pascal Hitzlerlong

22:40

Enhancing Rare Disease Research with Semantic Integration of Environmental and Health DataAlbert Navarro-Gallinad, Fabrizio Orlandi and Declan O’Sullivanlong

23:00

A Pattern for Features on a Hierarchical Spatial GridCogan Shimizu, Rui Zhu, Gengchen Mai, Colby Fisher, Ling Cai, Mark Schildhauer, Krzysztof Janowicz, Pascal Hitzler, Lu Zhou and Shirly Stephenlong

23:20

Knowledge Graph Curation: A Practical FrameworkElwin Huaman and Dieter Fenselshort

23:25

Towards Ontology Reshaping for KG Generation with User-in-the-Loop: Applied to Bosch WeldingDongzhuoran Zhou, Baifan Zhou, Jieying Chen, Gong Cheng, Egor Kostylev and Evgeny Kharlamovshort

23:30

LEKG: A System for Constructing Knowledge Graph from Log ExtractionFangrong Wang, Alan Bundy, Xue Li, Ruiqi Zhu, Kwabena Nuamah, Lei Xu, Stefano Mauceri and Jeff Panshort

23:35

Multi-modal Navigation Interaction Recommendation with a Driver Demand-Based Knowledge GraphKeqi Chen, Jun Ma, Qianwen Zhang and Yue Baishort

23:40

ESDL: Entity Summarization with Deep LearningAbdulkarim Kushk and Krzysztof Kochutshort

23:45

Q&A for Short Papers (breakout rooms)





Break

(00:00–00:20)





Town Hall 

(00:20–00:40)

Chair: Various





Closing & Awards

(00:40–1:00)

Chair: Various


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

68e5ba6296ea2e7d0b0d25d3490a6082.png

点击阅读原文,进入 IJCKG 2021 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/477945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1128. 等价多米诺骨牌对的数量(哈希)

1. 题目 给你一个由一些多米诺骨牌组成的列表 dominoes。 如果其中某一张多米诺骨牌可以通过旋转 0 度或 180 度得到另一张多米诺骨牌,我们就认为这两张牌是等价的。 形式上,dominoes[i] [a, b] 和 dominoes[j] [c, d] 等价的前提是 ac 且 bd&#…

纵观对话预训练技术演变史:化繁为简的背后,什么在消亡?

文 | 橙橙子最近,百度发布了对话生成预训练模型PLATO-XL,110亿的参数规模,也让它成为了对话领域目前最大的预训练模型。不到两年的时间,PLATO系列已走过三代。作为国内对话预训练技术的头部玩家,它的每一次…

会议交流 | CNCC2021中国计算机大会 —— 知识图谱赋能数字化转型论坛

OpenKGOpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。点击阅读原文,进入 OpenKG 网站。

LeetCode 687. 最长同值路径(二叉树,递归)

1. 题目 给定一个二叉树,找到最长的路径,这个路径中的每个节点具有相同值。 这条路径可以经过也可以不经过根节点。 注意:两个节点之间的路径长度由它们之间的边数表示。 示例 1: 输入:5/ \4 5/ \ \1 1 5 输出: 2示例 2: 输入:1/ …

机器学习中的数据清洗与特征处理综述

随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团…

论文浅尝 | 面向视觉常识推理的层次语义增强方向图网络

论文笔记整理:刘克欣,天津大学硕士链接:https://dl.acm.org/doi/abs/10.1145/3475731.3484957动机视觉常识推理(VCR)任务旨在促进认知水平相关推理的研究。现有的方法仅考虑了区域-词的相似性来实现视觉和语言域之间的语义对齐,忽…

分类问题后处理技巧CAN,近乎零成本获取效果提升

文 | 苏剑林编 | 智商掉了一地单位 | 追一科技思想朴素却不平凡的分类问题后处理技巧,浅显易懂的讲解,拿来吧你!顾名思义,本文将会介绍一种用于分类问题的后处理技巧——CAN(Classification with Alternating Normaliz…

LeetCode 840. 矩阵中的幻方(数学)

1. 题目 3 x 3 的幻方是一个填充有从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的 grid,其中有多少个 3 3 的 “幻方” 子矩阵?(每个子矩阵都是连续的&…

Docker系列之一:入门介绍

Docker简介 Docker是DotCloud开源的、可以将任何应用包装在Linux container中运行的工具。2013年3月发布首个版本,当前最新版本为1.3。Docker基于Go语言开发,代码托管在Github上,目前超过10000次commit。基于Docker的沙箱环境可以实现轻型隔离…

论文浅尝 | 动态知识图谱对齐

论文笔记整理:谭亦鸣,东南大学博士生来源:AAAI‘21链接:https://ojs.aaai.org/index.php/AAAI/article/view/16585概述本文提出了一种动态图谱(KG)对齐方法,在“动态”(即图谱可能随时间更新)的…

你的 GNN,可能 99% 的参数都是冗余的

文 | iven自从图卷积神经网络(GCN)面世以来,图神经网络(GNN)的热潮一瞬间席卷 NLP。似乎在一切 NLP 任务上,引入一个图结构,引入一个 GNN,就能让模型拥有推理能力。更重要的是&#…

LeetCode 874. 模拟行走机器人(set)

1. 题目 机器人在一个无限大小的网格上行走&#xff0c;从点 (0, 0) 处开始出发&#xff0c;面向北方。该机器人可以接收以下三种类型的命令&#xff1a; -2&#xff1a;向左转 90 度-1&#xff1a;向右转 90 度1 < x < 9&#xff1a;向前移动 x 个单位长度 在网格上有…

高级语言的编译:链接及装载过程介绍

引言 随着越来越多功能强大的高级语言的出现&#xff0c;在服务器计算能力不是瓶颈的条件下&#xff0c;很多同学会选择开发效率高&#xff0c;功能强大的虚拟机支持的高级语言&#xff08;Java&#xff09;&#xff0c;或者脚本语言&#xff08;Python&#xff0c;Php&#xf…

图谱实战 | 基于半结构化百科的电影KG构建、查询与推理实践记录

转载公众号 | 老刘说NLP本文围绕基于半结构化百科的电影知识图谱构建、查询与推理实践这一主题&#xff0c;完成基于百度百科的电影元组抽取、基于protg的电影本体构建、基于D2RQ的RDF数据转换与查询、基于Apache jena的电影知识推理四个环节的实践。这是半结构化知识图谱构建和…

推荐系统精排:看阿里妈妈再试线性模型

文 | 水哥源 | 知乎saying1.科学总是要求我们有深度&#xff0c;但在实际业务中这却是一条悖论&#xff1a;越有深度的事情往往投入产出比不够高2.当我有一个方法A&#xff0c;还有一个方法B。且B的某种简单形式就是A的时候&#xff0c;我就会很快乐&#xff0c;因为这时候B获取…

LeetCode 686. 重复叠加字符串匹配

1.题目 给定两个字符串 A 和 B, 寻找重复叠加字符串A的最小次数&#xff0c;使得字符串B成为叠加后的字符串A的子串&#xff0c;如果不存在则返回 -1。 举个例子&#xff0c;A “abcd”&#xff0c;B “cdabcdab”。 答案为 3&#xff0c; 因为 A 重复叠加三遍后为 “abcd…

如何提升大规模Transformer的训练效果?Primer给出答案

文 | 舞风小兔编 | 智商掉了一地如何进一步提升大规模Transformer的训练效果&#xff1f;Primer给出了答案&#xff0c;一起来看看吧&#xff01;Transformer是深度学习界的明星模型。由于其具有高度的并行性&#xff0c;十分容易在并行计算系统中扩展至超大规模。自然语言处理…

会议交流|大模型与图学习等知识图谱相关技术实践探索

2021年&#xff0c;在疫情隔离和复杂国际形势的背景下&#xff0c;我们越发认识到重视核心基础技术&#xff0c;对保持国家独立自主发展的关键价值&#xff0c;互联网和科技行业也面临着新的挑战和变革机遇&#xff0c;新的AI技术正发挥越来越大的作用&#xff0c;AI技术本身正…

Kafka文件存储机制那些事

Kafka是什么 Kafka是最初由Linkedin公司开发&#xff0c;是一个分布式、分区的、多副本的、多订阅者&#xff0c;基于zookeeper协调的分布式日志系统(也可以当做MQ系统)&#xff0c;常见可以用于web/nginx日志、访问日志&#xff0c;消息服务等等&#xff0c;Linkedin于2010年贡…

LeetCode 392. 判断子序列(双指针二分查找)

1. 题目 给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长&#xff08;长度 ~ 500,000&#xff09;&#xff0c;而 s 是个短字符串&#xff08;长度 <100&#xff09;。 字符串的一个子序列是原始…