文章目录
- 1. 题目
- 2. 解题
- 2.1 回溯超时解
- 2.2 回溯优化
- 2.3 动态规划
1. 题目
给定一个字符串数组 arr,字符串 s 是将 arr 某一子序列字符串连接所得的字符串,如果 s 中的每一个字符都只出现过一次,那么它就是一个可行解。
请返回所有可行解 s 中最长长度。
示例 1:
输入:arr = ["un","iq","ue"]
输出:4
解释:所有可能的串联组合是 "","un","iq","ue","uniq" 和 "ique",最大长度为 4。示例 2:
输入:arr = ["cha","r","act","ers"]
输出:6
解释:可能的解答有 "chaers" 和 "acters"。示例 3:
输入:arr = ["abcdefghijklmnopqrstuvwxyz"]
输出:26提示:
1 <= arr.length <= 16
1 <= arr[i].length <= 26
arr[i] 中只含有小写英文字母
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-length-of-a-concatenated-string-with-unique-characters
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
2.1 回溯超时解
class Solution {int maxlen = 0;
public:int maxLength(vector<string>& arr) {int count = 0;dfs(arr, count, 0, 0);return maxlen;}void dfs(vector<string>& arr, int count, int idx, int len){bool ok;for(int i = idx, j; i < arr.size(); ++i){ //不应该加这层循环,超时了!!!ok = true;for(j = 0; j < arr[i].size(); ++j){if((count>>(arr[i][j]-'a'))&1)//已经存在该字符{ok = false;break;}}if(ok){for(j = 0; j < arr[i].size(); ++j){count |= (1<<(arr[i][j]-'a'));}len += arr[i].size();maxlen = max(maxlen, len);dfs(arr, count, idx+1, len);len -= arr[i].size();for(j = 0; j < arr[i].size(); ++j){count &= ~(1<<(arr[i][j]-'a'));}}}}
};
2.2 回溯优化
- 把每个字符的状态存在 int 的二进制位上
- 每个单词两种选择,选或者不选
class Solution {int maxlen = 0;
public:int maxLength(vector<string>& arr) {dfs(arr, 0, 0, 0);return maxlen;}void dfs(vector<string>& arr, int count, int i, int len){maxlen = max(maxlen, len);if(i == arr.size())return;int j, origin = count;for(j = 0; j < arr[i].size(); ++j){if((count>>(arr[i][j]-'a'))&1)//已经存在该字符{return dfs(arr, origin, i+1, len);//这个单词不选}count |= (1<<(arr[i][j]-'a'));}dfs(arr, origin, i+1, len);//该单词不选 dfs(arr, count, i+1, len+arr[i].size()); //该单词选}
};
8 ms 8.2 MB
2.3 动态规划
class Solution {
public:int maxLength(vector<string>& arr) {int i, j, n = arr.size(), maxlen = 0, state, nextstate;bool ok;map<int,int> dp;//字符数状态int表示,最大长度dp[0] = 0;for(i = 0; i < n; ++i){for(auto it = dp.rbegin(); it != dp.rend(); ++it){ //逆序遍历,新生成的状态加在末尾了不会干扰本次//本题正序,也可以,因为同一个单词加2次肯定重复,//不会新生成下一个state,但是无畏的遍历多了,耗时788 ms 13.8 MBstate = it->first;nextstate = state;ok = true;for(j = 0; j < arr[i].size(); ++j){if((nextstate>>(arr[i][j]-'a'))&1)//该位存在{ok = false;break;}nextstate |= (1<<(arr[i][j]-'a'));}if(ok){dp[nextstate] = max(dp[nextstate], int(dp[state]+arr[i].size()));maxlen = max(maxlen, dp[nextstate]);}}}return maxlen;}
};
184 ms 13.6 MB