线性规划 - 用单纯形法解决整数规划问题 - (Matlab、Lingo建模)

现实生活中,比如机器的台数,参与工作的人数,可调动的车辆数,这些数据都是整数。因此对于变量中包含整数、或者完全是整数的规划问题,我们称之为整数规划。在解决整数规划常用的算法便是单纯形法。

课题名称:任务的分配

设有甲、乙、丙、丁四个人,各有能力去完成A、B、C、D、E五项任务中的任一项,由于四个人的能力和经验不同,所需完成各项任务的时间如表1所示.由于任务数多于人数,要求考虑如下问题:

(1)       任务E必须完成,其他四项中可任选三项完成;

(2)       要求有一个人完成两项任务,其他人各完成一项;

(3)       要求任务A可由甲或丙完成,任务C可由丙或丁完成,任务E可由甲、乙或丁完成,且规定四个人中丙或丁能够完成两项任务,其他人完成一项任务。

试分别确定最优的分配方案,使得完成任务的总时间最少。

表1   每个人完成各项任务的能力

项目

人员

A

B

C

D

E

25

29

31

42

37

39

38

26

20

33

34

27

28

40

32

24

42

36

23

45

    由于任务数大于人数,所以需要有一个虚拟的人,设为戊。因为工作E必须完成,故设戊完成E的时间为M(M为非常大的数),即戊不能做工作E,其余的假想时间为0,建立的效率矩阵如表2:

表2   每个人完成各项任务的能力

项目

人员

A

B

C

D

E

25

29

31

42

37

39

38

26

20

33

34

27

28

40

32

24

42

36

23

45

0

0

0

0

M

令第 i 个人表示甲、乙、丙、丁、戊,第 j 个任务分别表示ABCD、E项任务,cij 表示第 i 个人完成第 j 个任务的时间(d)。设:

Z为完成任务的总时间(d)。则该问题的数学模型为:

为输入程序方便,令M=1000.

方法一:Matlab求解

Matlab程序:

c=[25 29 31 42 37;39 38 26 20 33;34 27 28 40 32;24 42 36 23 45;0 0 0 0 1000];
n=size(c,1);  
c=c(:);
a=zeros(2*n,n^2);
for i=1:na(i,(i-1)*n+1:n*i)=1;a(n+i,i:n:n^2)=1;
end
b=ones(2*n,1);
[x,y]=linprog(c,[],[],a,b,zeros(n^2,1),ones(n^2,1));
X=reshape(x,n,n);
X_min=round((X)),y

Matlab运行结果:

Optimization terminated.
X_min =0     1     0     0     00     0     0     1     00     0     0     0     11     0     0     0     00     0     1     0     0
y =105.0000

方案:甲——B ,乙——D ,丙——E ,丁——A ,  总时间为105(d).

方法二:lingo求解

Lingo程序:

model:
sets:
row/1..5/;
arrange/1..5/;
link(row,arrange):c,x;
endsets	
data:
c=25,29,31,42,37,39,38,26,20,33,34,27,28,40,32,24,42,36,23,45,0,0,0,0,1000;
enddata
[OBJ]min=@sum(link(i,j):c(i,j)*x(i,j));
x(1,1)+x(1,2)+x(1,3)+x(1,4)+x(1,5)=1;
x(2,1)+x(2,2)+x(2,3)+x(2,4)+x(2,5)=1;
x(3,1)+x(3,2)+x(3,3)+x(3,4)+x(3,5)=1;
x(4,1)+x(4,2)+x(4,3)+x(4,4)+x(4,5)=1;
x(5,1)+x(5,2)+x(5,3)+x(5,4)+x(5,5)=1;
x(1,1)+x(2,1)+x(3,1)+x(4,1)+x(5,1)=1;
x(1,2)+x(2,2)+x(3,2)+x(4,2)+x(5,2)=1;
x(1,3)+x(2,3)+x(3,3)+x(4,3)+x(5,3)=1;
x(1,4)+x(2,4)+x(3,4)+x(4,4)+x(5,4)=1;
x(1,5)+x(2,5)+x(3,5)+x(4,5)+x(5,5)=1;
@for(link(i,j):x(i,j)>=0;);
end

Lingo运行结果:

Global optimal solution found.Objective value:                              136.0000Infeasibilities:                              0.000000Total solver iterations:                             9Elapsed runtime seconds:                          0.04Variable           Value        Reduced CostC( 1, 1)        25.00000            0.000000C( 1, 2)        29.00000            0.000000C( 1, 3)        1000.000            0.000000C( 1, 4)        42.00000            0.000000C( 1, 5)        37.00000            0.000000C( 2, 1)        1000.000            0.000000C( 2, 2)        38.00000            0.000000C( 2, 3)        1000.000            0.000000C( 2, 4)        20.00000            0.000000C( 2, 5)        33.00000            0.000000C( 3, 1)        34.00000            0.000000C( 3, 2)        27.00000            0.000000C( 3, 3)        28.00000            0.000000C( 3, 4)        40.00000            0.000000C( 3, 5)        1000.000            0.000000C( 4, 1)        1000.000            0.000000C( 4, 2)        42.00000            0.000000C( 4, 3)        36.00000            0.000000C( 4, 4)        23.00000            0.000000C( 4, 5)        45.00000            0.000000C( 5, 1)        34.00000            0.000000C( 5, 2)        27.00000            0.000000C( 5, 3)        28.00000            0.000000C( 5, 4)        23.00000            0.000000C( 5, 5)        45.00000            0.000000X( 1, 1)        1.000000            0.000000X( 1, 2)        0.000000            11.00000X( 1, 3)        0.000000            981.0000X( 1, 4)        0.000000            28.00000X( 1, 5)        0.000000            10.00000X( 2, 1)        0.000000            969.0000X( 2, 2)        0.000000            14.00000X( 2, 3)        0.000000            975.0000X( 2, 4)        0.000000            0.000000X( 2, 5)        1.000000            0.000000X( 3, 1)        0.000000            0.000000X( 3, 2)        0.000000            0.000000X( 3, 3)        1.000000            0.000000X( 3, 4)        0.000000            17.00000X( 3, 5)        0.000000            964.0000X( 4, 1)        0.000000            966.0000X( 4, 2)        0.000000            15.00000X( 4, 3)        0.000000            8.000000X( 4, 4)        1.000000            0.000000X( 4, 5)        0.000000            9.000000X( 5, 1)        0.000000            0.000000X( 5, 2)        1.000000            0.000000X( 5, 3)        0.000000            0.000000X( 5, 4)        0.000000            0.000000X( 5, 5)        0.000000            9.000000

lingo所得的方案与matlab一致。甲——B ,乙——D ,丙——E ,丁——A ,  总时间为105(d).

lingo的运行结果怎么解读的问题,我已经在上一篇“非线性规划”的文章中说了,不再赘述,不懂的同学可以过去看一看,以后用lingo解决的问题还会有,不会每次都讲解怎么看运行结果哦,希望见谅,下面是“非线性规划”文章的链接。

数据建模-用非线性规划解决问题

    整数规划问题是线性规划问题的一种特殊情况,本例题为典型的非标准形式的指派问题,根据题目的不同要求,相应地添加虚拟人或任务以及修改效率矩阵。另外,在转换成程序语言时,引进的M可以任意取定一个较大的数,方便计算的进行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/475599.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1471. 数组中的 k 个最强值(排序)

1. 题目 给你一个整数数组 arr 和一个整数 k 。 设 m 为数组的中位数,只要满足下述两个前提之一,就可以判定 arr[i] 的值比 arr[j] 的值更强: |arr[i] - m| > |arr[j] - m||arr[i] - m| |arr[j] - m|,且 arr[i] > arr[j…

Oracle 多表 连接 顺序 与 性能关系 测试

一. 创建表并insert 数据 create table ta (id number,name varchar2(10)); create table tb(id number,job varchar2(10)); begin for i in 1..1000000 loop begin insert into ta values(i,dave); commit; end; end loop; end; begin for i in 1..1000000 loop begin if i<…

线性规划 - 用单纯形法解决LP问题 - (Matlab、Lingo建模)

线性规划研究时间较早&#xff0c;在实际应用中也比较成熟&#xff0c;它是一种辅助人们进行科学管理的数学方法&#xff0c;为合理地利用有限的人力、物力、财力等资源作出的最优决策&#xff0c;提供科学的依据。 课题名称&#xff1a;配货问题&#xff0c;使运费收入最大 现…

LeetCode 1472. 设计浏览器历史记录(双栈)

1. 题目 你有一个只支持单个标签页的 浏览器 &#xff0c;最开始你浏览的网页是 homepage &#xff0c;你可以访问其他的网站 url &#xff0c;也可以在浏览历史中后退 steps 步或前进 steps 步。 请你实现 BrowserHistory 类&#xff1a; BrowserHistory(string homepage) …

微软Webcast课程下载软件iReaper正式登陆Android平台

微软Webcast课程下载软件iReaper正式登陆Android平台&#xff0c;我叫它iReaper for Android。目前正处于测试阶段&#xff0c;功能比较单一。 目前支持 1.视频下载 2.课程代码下载 3.讲义下载 4.问答下载 附上截图&#xff0c;敬请期待&#xff01; 1.下载地址&#xff…

LeetCode 1473. 给房子涂色 III(DP)

1. 题目 在一个小城市里&#xff0c;有 m 个房子排成一排&#xff0c;你需要给每个房子涂上 n 种颜色之一&#xff08;颜色编号为 1 到 n &#xff09;。 有的房子去年夏天已经涂过颜色了&#xff0c;所以这些房子不需要被重新涂色。 我们将连续相同颜色尽可能多的房子称为一…

动态规划 - Floyd算法求最短路径 - (Matlab建模)

Floyd算法又称为弗洛伊德算法、插点法&#xff0c;是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法&#xff0c;与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特弗洛伊德命名。 课题名称&#xff1a;…

DIV Scroll属性

DIV Scroll属性详解&#xff0c;为DIV层打造不同的滚动条。一、scrollbar属性、样式详解 1&#xff0e;overflow内容溢出时的设置&#xff08;设定被设定对象是否显示滚动条&#xff09; overflow-x水平方向内容溢出时的设置 overflow-y垂直方向内容溢出时的设置 以上…

神经网络 - BP神经网络与RBF神经网络模型解决实际问题 - (Matlab建模)

目录 神经网络模型简述 实例&#xff1a;交通运输能力预测设计 MATLAB程序及仿真结果 由于货物运输、地方经济及企业发展的紧密联系&#xff0c;因此作为反映货物运输需求的一项重要指标, 货运量预测研究和分析具有较强的实际意义。 常用的货运量预测方法包括时间序列方法、…

LeetCode 135. 分发糖果(DP)

1. 题目 老师想给孩子们分发糖果&#xff0c;有 N 个孩子站成了一条直线&#xff0c;老师会根据每个孩子的表现&#xff0c;预先给他们评分。 你需要按照以下要求&#xff0c;帮助老师给这些孩子分发糖果&#xff1a; 每个孩子至少分配到 1 个糖果。相邻的孩子中&#xff0c…

神经网络 - RBF神经网络与BP网络优缺点比较 - 机器学习基础知识

RBF神经网络与BP神经网络优缺点比较 1. RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。 2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经…

网络数据的背后-网络日志的分析指标【转】

通常网站分析的技术包括页面标签分析技术&#xff08;JS技术&#xff09;和日志文件分析技术两种&#xff0c;两种网站分析技术各有优缺点&#xff0c;譬如下文中介绍的基于回话的统计和点击流分析日志文件分析法就要优于页面标签分析法&#xff0c;通常&#xff0c;两种技术具…

词云图 - WorldCloud - Python代码实现

目录 第一步&#xff1a;安装必要的包WorldCloud&#xff08;安装好并且没有出错的可跳过这一步&#xff09; 第二步&#xff1a;准备文件&#xff0c;词云图的图片和文章&#xff0c;按照自己喜好准备吧 第三步&#xff1a;Python实现-源码 第一步&#xff1a;安装必要的包…

运行命令

cmd--------CMD命令提示符ipconfig-------检查IPtsshutdn-------60秒倒计时关机命令cleanmgr-------垃圾整理calc-----------启动计算器notepad--------打开记事本logoff---------注销命令winver---------检查Windows版本mstsc----------远程桌面连接转载于:https://www.cnblog…

[Hands On ML] 2. 一个完整的机器学习项目(加州房价预测)

文章目录1. 项目介绍2. 性能指标3. 确定任务类型4. 查看数据5. 创建测试集6. 数据可视化7. 查找数据关联8. 特征组合9. 为算法准备数据9.1 数据清洗9.2 处理文本特征10. 自定义转换器11. 特征缩放12. 转换流水线Pipeline13. 训练模型14. 交叉验证15. 微调模型15.1 网格搜索15.2…

线性回归 - 机器学习多元线性回归 - 一步一步详解 - Python代码实现

目录 数据导入 单变量线性回归 绘制散点图 相关系数R 拆分训练集和测试集 多变量线性回归 数据检验&#xff08;判断是否可以做线性回归&#xff09; 训练线性回归模型 先甩几个典型的线性回归的模型&#xff0c;帮助大家捡起那些年被忘记的数学。 ● 单变量线性回归&…

Checking battery state… ubuntu

Checking battery state… 当ubuntu启动的时候遇到 “Checking battery state….”时&#xff0c; 按下ctrl alt F1,进入终端&#xff0c;使用管理员权限执行下列代码 sudo rm /etc/X11/xorg.confsudo reboot 转载于:https://www.cnblogs.com/hjslovewcl/archive/2011/06/30/…

层次分析法AHP - 代码注释多 - ( 数据建模 Python代码)

实际生活中&#xff0c;往往有一些很复杂的系统&#xff0c;我们没办法直观草率的确定权重&#xff0c;比如甲、乙、丙三人竞选总统&#xff0c;严谨的说&#xff0c;需要从三人的社交能力、管理能力、经济能力等方面来考虑&#xff0c;在每个方面&#xff0c;三位候选人的得分…

LeetCode 1155. 掷骰子的N种方法(DP)

1. 题目 这里有 d 个一样的骰子&#xff0c;每个骰子上都有 f 个面&#xff0c;分别标号为 1, 2, …, f。 我们约定&#xff1a;掷骰子的得到总点数为各骰子面朝上的数字的总和。 如果需要掷出的总点数为 target&#xff0c;请你计算出有多少种不同的组合情况&#xff08;所…

Android 之自定义组件

1、如何在一个按钮上放上一张图片&#xff1f;把按钮和图片套在一个FrameLayout中 <!-- 必须将button和ImageView分别嵌套在两个LinearLayout中才能 实现将图片放在按钮上 --> <FrameLayout android:orientation"horizontal" android:layout_width&…