分组统计 - DataFrame.groupby() 所见的各种用法 - Python代码

目录

所见 1 :日常用法

所见 2 :解决groupby.sum() 后层级索引levels上移的问题

所见 3 :解决groupby.apply() 后层级索引levels上移的问题

所见 4 :groupby函数的分组结果保存成DataFrame


groupby的函数定义:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

  • by :接收映射、函数、标签或标签列表;用于确定聚合的组。
  • axis : 接收 0/1;用于表示沿行(0)或列(1)分割。
  • level : 接收int、级别名称或序列,默认为None;如果轴是一个多索引(层次化),则按一个或多个特定级别分组。
  • as_index:接收布尔值,默认Ture;Ture则返回以组标签为索引的对象,False则不以组标签为索引。

其他的参数解释就看文档吧:链接:pandas.DataFrame.groupby 介绍文档

 

所见 1 :日常用法

import pandas as pddf = pd.DataFrame({'Gender' : ['男', '女', '男', '男', '男', '男', '女', '女', '女'],'name' : ['周杰伦', '蔡依林', '林俊杰', '周杰伦', '林俊杰', '周杰伦', '田馥甄', '蔡依林', '田馥甄'],'income' : [4.5, 2.9, 3.8, 3.7, 4.0, 4.1, 1.9, 4.1, 3.2],'expenditure' : [1.5, 1.9, 2.8, 1.7, 4.1, 2.5, 1.1, 3.4, 1.2]})
#根据其中一列分组
df_expenditure_mean = df.groupby(['Gender']).mean()#根据其中两列分组
df_expenditure_mean = df.groupby(['Gender', 'name']).mean()#只对其中一列求均值
df_expenditure_mean = df.groupby(['Gender', 'name'])['income'].mean()

输出示例:

 

所见 2 :解决groupby.sum() 后层级索引levels上移的问题

上图中的输出二,虽然是 DataFrame 的格式,但是若需要与其他表匹配的时候,这个格式就有些麻烦了。匹配数据时,我们需要的数据格式是:列名都在第一行,数据行中也不能有 Gender 列这样的合并单元格。因此,我们需要做一些调整,将 as_index 改为 False ,默认是 Ture 。

#不以组标签为索引,通过 as_index 来实现
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False).mean()

输出:

所见 3 :解决groupby.apply() 后层级索引levels上移的问题

在所见 2 中我们知道,使用参数 as_index 就可使 groupby 的结果不以组标签为索引,但是后来在使用 groupby.apply() 时发现,as_index 参数失去了效果。如下例所示:

# 使用了 as_index=False,但是从输出结果中可见没起到作用
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式

输出:

解决办法: 加一句df_apply_index = df_apply.reset_index()

# 加一句df_apply_index = df_apply.reset_index()
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式
df_apply_index = df_apply.reset_index()

输出:

 

所见 4 :groupby函数的分组结果保存成DataFrame

所见 1 中的输出三,明显是  Series ,我们需要将其转化为 DataFrame 格式的数据。

#只对其中一列求均值,并转化为 DataFrame
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False)['income'].mean()
df_expenditure_mean = pd.DataFrame(df_expenditure_mean)#转化成dataframe格式
df_expenditure_mean.rename(columns={'income':'收入均值'}, inplace = True)

输出:

 

 

下班啦,明天继续!

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/475482.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线性回归 - 多元线性回归案例 - 分析步骤、输出结果详解、与Python的结果对比 -(SPSS建模)

现在用 Python 写线性回归的博客都快烂大街了,为什么还要用 SPSS 做线性回归呢?这就来说说 SPSS 存在的原因吧。 SPSS 是一个很强大的软件,不用编程,不用调参,点巴两下就出结果了,而且出来的大多是你想要的…

R12 应付款模块(AP):预付款(prepayment)的标准处理流程

预付款的概念 财务会计的解释: 企业对于某些物资有时需要采取预先订购的方式,即按照购货合同规定预付一部分货款。这部分预先付给供货单位的订货款就构成了企业的预付账款。(来自会计学概论,要区分定金和预付款的区别!…

LeetCode 391. 完美矩形(set检查顶点+面积检查)

1. 题目 我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域。 每个矩形用左下角的点和右上角的点的坐标来表示。例如, 一个单位正方形可以表示为 [1,1,2,2]。 ( 左下角的点的坐标为 (1, 1) 以及右上角的点的坐标为 (2, 2) )。…

时间序列 - 案例按步骤详解 -(SPSS建模)

时间序列简单的说就是各时间点上形成的数值序列,通过观察历史数据的变化规律预测未来的值。在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的。 准备工作:SPSS - 中文版 SPSS 22.0 软件下…

特征计算 - 遍历求值提速 6 万倍 lambda...if...else(if...else...) +map() 对比 iterrows() - Python代码

Python 进行 DataFrame 数据处理的过程中,需要判断某一列中的值(条件),然后对其他两列或三列进行求和(均值/最值)等运算,并把运算结果存储在新的一列中。干说可能觉得比较晕,我们来看…

非线性回归 - 案例按步骤详解 -(SPSS建模)

在上一篇时间序列的文章中,偶然发现另一份数据的整体趋势很符合非线性回归关系,那么就顺势写一篇非线性回归案例的文章吧。 准备工作:SPSS - 中文版 SPSS 22.0 软件下载与安装教程 - 【附产品授权许可码,永久免费】 数据解释&am…

邮件服务器之POP3协议分析

第1章. POP3概述 POP3全称为Post Office Protocol version3,即邮局协议第3版。它被用户代理用来邮件服务器取得邮件。POP3采用的也是C/S通信 模型,对应的RFC文 档为RFC1939。 该协议非常简单,所以我们只重点介绍其通信过程,而相关…

Python 画图常用颜色 - 单色、渐变色、混色 - 够用

单色 装了seaborn扩展的话,在字典seaborn.xkcd_rgb中包含所有的xkcd crowdsourced color names。如下: plt.plot([1,2], lw4, cseaborn.xkcd_rgb[baby poop green]) 虽然觉得上面的已经够用了,但是还是备份一下这个最全的吧。 渐变色&…

[scikit-learn 机器学习] 2. 简单线性回归

文章目录1. 简单线性回归2. 评价模型本文为 scikit-learn机器学习(第2版)学习笔记1. 简单线性回归 import numpy as np import matplotlib.pyplot as pltX np.array([[6],[8],[10],[14],[18]]) y np.array([7,9,13,17.5,18]) plt.title("pizza …

Matplotlib - 散点图 scatter() 所有用法详解

目录 基本用法 散点的大小不同(根据点对应的数值) 散点的颜色不同(指定颜色或者渐变色) 散点图和折线图是数据分析中最常用的两种图形,他们能够分析不同数值型特征间的关系。其中,散点图主要用于分析特征…

Matplotlib - 折线图 plot() 所有用法详解

散点图和折线图是数据分析中最常用的两种图形。其中,折线图用于分析自变量和因变量之间的趋势关系,最适合用于显示随着时间而变化的连续数据,同时还可以看出数量的差异,增长情况。 Matplotlib 中绘制散点图的函数为 plot() &…

html 拍照旋转了90度_华为Mate X2概念图:可旋转正反三屏幕,单颗镜头在转轴上...

如果你是新朋友,请点击上方的蓝色字 关注 “高科技爱好者”,保证不会让你失望的.华为折叠手机的上市发售,引起了消费者的广泛关注,尤其是华为MateX系列手机的售价非常昂贵,同时出货量也比较少,所以外界都十…

[scikit-learn 机器学习] 3. K-近邻算法分类和回归

文章目录1. KNN模型2. KNN分类3. 使用sklearn KNN分类4. KNN回归本文为 scikit-learn机器学习(第2版)学习笔记K 近邻法(K-Nearest Neighbor, K-NN) 常用于 搜索和推荐系统。 1. KNN模型 确定距离度量方法(如欧氏距离…

Matplotlib - 柱状图、直方图、条形图 bar() barh() 所有用法详解

目录 基本用法 多个直方图并列显示 显示直方图上的数值 多个直方图堆叠显示 水平直方图 相较散点图和折线图,柱状图(直方图、条形图)、饼图、箱线图是另外 3 种数据分析常用的图形,主要用于分析数据内部的分布状态或分散状…

word里双横线怎么打_美人计 | 精致打工人秀智,教你内双怎么化

通勤妆千千万,大家画好才能算。国民初恋裴秀智搭档“南朋友”南柱赫,《启动了》这部剧让很多颜值控都纷纷沦陷了。起初奔着这两大主角看的,结果看着看着又被男二金宣虎圈了粉,在剧中裴秀智和金宣虎两小无猜的感情没能发展成爱情&a…

Matplotlib - 饼图、环形图 pie() 多重饼图 subplots() 所有用法详解

目录 基本用法 饼图中突出显示某部分 环形图(空心饼图) 多重饼图,并添加分割线 相较散点图和折线图,柱状图、饼图、箱线图是另外 3 种数据分析常用的图形,主要用于分析数据内部的分布状态或分散状态。饼图主要用于…

USACO2.11 The Castle hdu1198

题意: 我们憨厚的USACO主人公农夫约翰(Farmer John)以无法想象的运气,在他生日那天收到了一份特别的礼物:一张“幸运爱尔兰”(一种彩票)。结果这张彩票让他获得了这次比赛唯一的奖品——坐落于爱尔兰郊外的一座梦幻般的城堡&#…

Matplotlib - 箱线图、箱型图 boxplot () 所有用法详解

目录 基本用法 水平箱线图,显示均值 改变箱线图的形状(箱体的形状notch、异常值的形状sym) 改变箱线图的颜色(箱体边框的颜色、箱体填充色) 相较散点图和折线图,柱状图、饼图、箱线图(箱…

【转载】三极管,场效应管 工作原理小结

三极管属于流控器件,即Ib控制放大Ic, 场效应管属于压控器件,即Ugs控制Id。 二者都有三个工作区域,即截止区,恒流区和可变电阻区。 Ib小于开启电流时,Ic不受控,Rce很大,Ic很小&#x…

educoderpython答案顺序结构程序设计_答案汇总:土木机械类+计算机类

土木机械类(点击图片查看答案)理论力学1哈工大第7版机械设计濮良贵第9版机械原理西工大第8版材料力学1刘鸿文第5版结构力学1龙驭球第4版结构力学朱慈勉第2版工程力学范钦珊第2版材料力学2孙训方第5版理论力学教程水小平机械工程控制基础杨叔子第6版自动控制原理胡寿松第6版土力…