时间序列 - 案例按步骤详解 -(SPSS建模)

时间序列简单的说就是各时间点上形成的数值序列,通过观察历史数据的变化规律预测未来的值。在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的。

准备工作:SPSS - 中文版 SPSS 22.0 软件下载与安装教程 - 【附产品授权许可码,永久免费】

第一步:导入数据

路径:【文件】--【打开】--【数据】--【更改文件类型,找到你的数据】--【打开】--【然后会蹦出下图左中的筛选框,基本使用默认值就行,点确定】

数据中,第一列为融资年月时间(2000-01~2018-12),第二列为融资金额(已脱敏),一共228行数据。

既然是研究融资金额在各时间点上的变化规律,那么第一列的月份必须连续,因此部分月份会有缺失值存在。下面我们需要填补缺失值。

第二步:数据预处理

填补缺失值:

【转换】--【替换缺失值】

【1:选择存在缺失值的列名(金额)】--【2:点击箭头】--【3:重命名填补缺失值之后的列名】--【4:选择填补缺失值的方法】--【5:部分填补方法需要设置邻近点的跨度】--【6:所有方法设置好了之后,点击更改(勿忘)】--【7:点击确定】

         

共有7个缺失值被邻近点的均值替换,填补之后的数据表为下图右所示。

时间变量的定义:

 若需要按照月度(或年度)差分查看分布状况的话,我们还需要对时间列进行转换。

第三步:做图观察

【分析】--【预测】--【序列图】

【变量(y轴,使用填补缺失值后的金额)】--【时间轴标签(x轴)】--【待熟悉之后可以尝试改变‘时间线’、‘格式’、‘转换’里的参数,现在先使用默认值】--【确定】

输出:大致可以看出,金额随着时间的变化是有一定规律的。

第四步:创建时间序列

计算前后相邻两个数值之差

输出:

 给‘金额_填补_之差’这一列作图观察数值的变化情况(操作步骤与第三步一样):

图形输出:

如果每个月金额的变化速度一致的话(即接近等差数列),那么‘金额_填补_之差’这一列的数值应该是比较平缓的!

季节差分

输出:

 给‘金额_填补_季节性查分’这一列作图观察数值的变化情况(操作步骤与第三步的区别是,需要勾选【差分】和【季节性差分】如下图所示):

图形输出:

 第五步:自相关分析

通过自相关看金额变量在时间上是否存在序列依存性。

输出结果:

自相关图中,Sig 小于理论显著性水平 0.01(或0.05) 即认为显著,这些数据间是有自相关的。

第六步:创建模型

【分析】--【预测】--【创建模型】

输出:

平稳的R方:决定系数,现有模型所能够解释的原变量的多少变异(较客观)。

R方:原数据去掉季节趋势,波动趋势,周期趋势之后的变异解释度(偏高)。

RMSE:残差均方。

MAPE:平均相对误差。

MAXApe:最大的相对百分比误差。

MAE:平均实测误差。

MAXAE:最大的绝对误差

H0未被拒绝。H0:当前的模型剩下来的这一块是否被看成是白噪声序列。

保存模型:【分析】--【预测】--【创建模型】

 对比预测值与实际值:

按照第三步的操作(区别是 y 轴不仅仅是填充后的金额第一列,还需要选上 以 pre,LCL,UCL为前缀的三列)进行对比:

第七步:预测

【分析】--【预测】--【创建模型】

输出(图表中蓝色线为预测值),同时数据表中也会自动保存具体的预测值:

使用的时候导出就好,(左上角:【文件】--【另存为】)

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/475471.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

正则表达式pcre在Android下的移植

因为项目需要在android的NDK开发中使用pcre正则表达式库,而android系统中并没有自带该库,所以就得另外移植了, 下面是移植的详细步骤: 1. 下载pcre源码,可以到http://sourceforge.net/projects/pcre/下载源码。 我这里…

LeetCode 593. 有效的正方形(数学)

1. 题目 给定二维空间中四点的坐标,返回四点是否可以构造一个正方形。 一个点的坐标(x,y)由一个有两个整数的整数数组表示。 示例: 输入: p1 [0,0], p2 [1,1], p3 [1,0], p4 [0,1] 输出: True注意: 所有输入整数都在 [-100…

特征计算 - 遍历求值提速 6 万倍 lambda...if...else(if...else...) +map() 对比 iterrows() - Python代码

Python 进行 DataFrame 数据处理的过程中,需要判断某一列中的值(条件),然后对其他两列或三列进行求和(均值/最值)等运算,并把运算结果存储在新的一列中。干说可能觉得比较晕,我们来看…

写写最近吧,关于读研、找工作

刚刚又被朋友问到为什么要选择读研的问题了。已经好多好多人问过我这样的问题,我何尝不想问问自己到底为什么要读研呢。前段时间,每天在睡觉之前都我要想出无数个理由劝服自己要坚持读研,而每天早上第一件事又是再问自己为什么要读研。 我觉得…

非线性回归 - 案例按步骤详解 -(SPSS建模)

在上一篇时间序列的文章中,偶然发现另一份数据的整体趋势很符合非线性回归关系,那么就顺势写一篇非线性回归案例的文章吧。 准备工作:SPSS - 中文版 SPSS 22.0 软件下载与安装教程 - 【附产品授权许可码,永久免费】 数据解释&am…

LeetCode 609. 在系统中查找重复文件(哈希)

1. 题目 给定一个目录信息列表,包括目录路径,以及该目录中的所有包含内容的文件,您需要找到文件系统中的所有重复文件组的路径。 一组重复的文件至少包括二个具有完全相同内容的文件。 输入列表中的单个目录信息字符串的格式如下&#xff1…

邮件服务器之POP3协议分析

第1章. POP3概述 POP3全称为Post Office Protocol version3,即邮局协议第3版。它被用户代理用来邮件服务器取得邮件。POP3采用的也是C/S通信 模型,对应的RFC文 档为RFC1939。 该协议非常简单,所以我们只重点介绍其通信过程,而相关…

Python 画图常用颜色 - 单色、渐变色、混色 - 够用

单色 装了seaborn扩展的话,在字典seaborn.xkcd_rgb中包含所有的xkcd crowdsourced color names。如下: plt.plot([1,2], lw4, cseaborn.xkcd_rgb[baby poop green]) 虽然觉得上面的已经够用了,但是还是备份一下这个最全的吧。 渐变色&…

[scikit-learn 机器学习] 2. 简单线性回归

文章目录1. 简单线性回归2. 评价模型本文为 scikit-learn机器学习(第2版)学习笔记1. 简单线性回归 import numpy as np import matplotlib.pyplot as pltX np.array([[6],[8],[10],[14],[18]]) y np.array([7,9,13,17.5,18]) plt.title("pizza …

Python 画图常用点的形状,Matplotlib 设置参数marker的值 - o + - ★☆►◁ - 够用

markertype含义“.”point点“,”pixel像素“o”circle圆“v”triangle_down下三角“^”triangle_up上三角“<”triangle_left左三角“>”triangle_right右三角“1”tri_down类似奔驰的标志“2”tri_up类似奔驰的标志“3”tri_left类似奔驰的标志“4”tri_right类似奔驰的…

iphone静态库的加载和调试

一. iphone静态库的加载&#xff1a;使用静态库需要提供*.a库文件和*.h头文件。 1. 在xcode中Frameworks项上点击右键add->existing files选择*.a库文件 2. 在classse项上点击右键add->existing files选择*.h头文件 3. 在需要使用库文件的*.m文件中添加import “*.h” 二…

Matplotlib - 散点图 scatter() 所有用法详解

目录 基本用法 散点的大小不同&#xff08;根据点对应的数值&#xff09; 散点的颜色不同&#xff08;指定颜色或者渐变色&#xff09; 散点图和折线图是数据分析中最常用的两种图形&#xff0c;他们能够分析不同数值型特征间的关系。其中&#xff0c;散点图主要用于分析特征…

VC 6中使用不同调用规范的函数在符号文件里的表示方式

在以前老版本的C编译器里&#xff0c;编译器会为使用不同调用约定&#xff08;Calling Convention&#xff09;的函数生成不同的名称&#xff0c;不仅是连接程序会遵从这个命名规则&#xff0c;调试器也会遵守这个命名规则。因此在Visual Studio里调试使用老版本编译器编译出来…

Matplotlib - 折线图 plot() 所有用法详解

散点图和折线图是数据分析中最常用的两种图形。其中&#xff0c;折线图用于分析自变量和因变量之间的趋势关系&#xff0c;最适合用于显示随着时间而变化的连续数据&#xff0c;同时还可以看出数量的差异&#xff0c;增长情况。 Matplotlib 中绘制散点图的函数为 plot() &…

html 拍照旋转了90度_华为Mate X2概念图:可旋转正反三屏幕,单颗镜头在转轴上...

如果你是新朋友&#xff0c;请点击上方的蓝色字 关注 “高科技爱好者”&#xff0c;保证不会让你失望的.华为折叠手机的上市发售&#xff0c;引起了消费者的广泛关注&#xff0c;尤其是华为MateX系列手机的售价非常昂贵&#xff0c;同时出货量也比较少&#xff0c;所以外界都十…

[scikit-learn 机器学习] 3. K-近邻算法分类和回归

文章目录1. KNN模型2. KNN分类3. 使用sklearn KNN分类4. KNN回归本文为 scikit-learn机器学习&#xff08;第2版&#xff09;学习笔记K 近邻法&#xff08;K-Nearest Neighbor, K-NN&#xff09; 常用于 搜索和推荐系统。 1. KNN模型 确定距离度量方法&#xff08;如欧氏距离…

[转帖]关于Linux下的icotl函数

关于Linux下的icotl函数 最近接触android开发&#xff0c;因为有时间所以就关注了下android的源码&#xff0c;在跟踪源码过程中到最后都会遇到icotl函数&#xff0c;虽然在Symbian中曾经遇到过RSocket的icotl函数&#xff0c;但是当时没有细究&#xff0c;今天有时间就搜索了下…

Matplotlib - 柱状图、直方图、条形图 bar() barh() 所有用法详解

目录 基本用法 多个直方图并列显示 显示直方图上的数值 多个直方图堆叠显示 水平直方图 相较散点图和折线图&#xff0c;柱状图&#xff08;直方图、条形图&#xff09;、饼图、箱线图是另外 3 种数据分析常用的图形&#xff0c;主要用于分析数据内部的分布状态或分散状…

word里双横线怎么打_美人计 | 精致打工人秀智,教你内双怎么化

通勤妆千千万&#xff0c;大家画好才能算。国民初恋裴秀智搭档“南朋友”南柱赫&#xff0c;《启动了》这部剧让很多颜值控都纷纷沦陷了。起初奔着这两大主角看的&#xff0c;结果看着看着又被男二金宣虎圈了粉&#xff0c;在剧中裴秀智和金宣虎两小无猜的感情没能发展成爱情&a…

LeetCode 480. 滑动窗口中位数(大小堆升级版+set实现)

1. 题目 中位数是有序序列最中间的那个数。 如果序列的大小是偶数&#xff0c;则没有最中间的数&#xff1b;此时中位数是最中间的两个数的平均数。 例如&#xff1a; [2,3,4]&#xff0c;中位数是 3 [2,3]&#xff0c;中位数是 (2 3) / 2 2.5 给你一个数组 nums&#xff0…