快速排序
快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
快速排序的分析
def quick_sort(alist, start, end):"""快速排序"""# 递归的退出条件if start >= end:return# 设定起始元素为要寻找位置的基准元素mid = alist[start]# low为序列左边的由左向右移动的游标low = start# high为序列右边的由右向左移动的游标high = endwhile low < high:# 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动while low < high and alist[high] >= mid:high -= 1# 将high指向的元素放到low的位置上alist[low] = alist[high]# 如果low与high未重合,low指向的元素比基准元素小,则low向右移动while low < high and alist[low] < mid:low += 1# 将low指向的元素放到high的位置上alist[high] = alist[low]# 退出循环后,low与high重合,此时所指位置为基准元素的正确位置# 将基准元素放到该位置alist[low] = mid# 对基准元素左边的子序列进行快速排序quick_sort(alist, start, low-1)# 对基准元素右边的子序列进行快速排序quick_sort(alist, low+1, end)alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(n2)
- 稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
归并排序
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。
将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
归并排序的分析
def merge_sort(alist):if len(alist) <= 1:return alist# 二分分解num = len(alist)/2left = merge_sort(alist[:num])right = merge_sort(alist[num:])# 合并return merge(left,right)def merge(left, right):'''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''#left与right的下标指针l, r = 0, 0result = []while l<len(left) and r<len(right):if left[l] < right[r]:result.append(left[l])l += 1else:result.append(right[r])r += 1result += left[l:]result += right[r:]return resultalist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(nlogn)
- 稳定性:稳定