文章目录
- 1. 题目
- 2. 解题
1. 题目
给你一个细长的画,用数轴表示。
这幅画由若干有重叠的线段表示,每个线段有 独一无二 的颜色。
给你二维整数数组 segments ,其中 segments[i] = [starti, endi, colori]
表示线段为 半开区间 [starti, endi)
且颜色为 colori
。
线段间重叠部分的颜色会被 混合 。
如果有两种或者更多颜色混合时,它们会形成一种新的颜色,用一个 集合 表示这个混合颜色。
比方说,如果颜色 2 ,4 和 6 被混合,那么结果颜色为 {2,4,6} 。
为了简化题目,你不需要输出整个集合,只需要用集合中所有元素的 和 来表示颜色集合。
你想要用 最少数目 不重叠 半开区间 来 表示 这幅混合颜色的画。这些线段可以用二维数组 painting 表示,其中 painting[j] = [leftj, rightj, mixj]
表示一个 半开区间[leftj, rightj)
的颜色 和 为 mixj
。
比方说,这幅画由 segments = [[1,4,5],[1,7,7]] 组成,那么它可以表示为 painting = [[1,4,12],[4,7,7]] ,因为:
[1,4) 由颜色 {5,7} 组成(和为 12),分别来自第一个线段和第二个线段。
[4,7) 由颜色 {7} 组成,来自第二个线段。
请你返回二维数组 painting ,它表示最终绘画的结果(没有 被涂色的部分不出现在结果中)。
你可以按 任意顺序
返回最终数组的结果。
半开区间 [a, b) 是数轴上点 a 和点 b 之间的部分,包含 点 a 且 不包含 点 b 。
示例 1:
输入:segments = [[1,4,5],[4,7,7],[1,7,9]]
输出:[[1,4,14],[4,7,16]]
解释:绘画借故偶可以表示为:
- [1,4) 颜色为 {5,9} (和为 14),分别来自第一和第二个线段。
- [4,7) 颜色为 {7,9} (和为 16),分别来自第二和第三个线段。
示例 2:
输入:segments = [[1,7,9],[6,8,15],[8,10,7]]
输出:[[1,6,9],[6,7,24],[7,8,15],[8,10,7]]
解释:绘画结果可以以表示为:
- [1,6) 颜色为 9 ,来自第一个线段。
- [6,7) 颜色为 {9,15} (和为 24),来自第一和第二个线段。
- [7,8) 颜色为 15 ,来自第二个线段。
- [8,10) 颜色为 7 ,来自第三个线段。
示例 3:
输入:segments = [[1,4,5],[1,4,7],[4,7,1],[4,7,11]]
输出:[[1,4,12],[4,7,12]]
解释:绘画结果可以表示为:
- [1,4) 颜色为 {5,7} (和为 12),分别来自第一和第二个线段。
- [4,7) 颜色为 {1,11} (和为 12),分别来自第三和第四个线段。
注意,只返回一个单独的线段 [1,7) 是不正确的,因为混合颜色的集合不相同。提示:
1 <= segments.length <= 2 * 10^4
segments[i].length == 3
1 <= starti < endi <= 10^5
1 <= colori <= 10^9
每种颜色 colori 互不相同。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/describe-the-painting
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
参考:差分思想题目
class Solution {
public:vector<vector<long long>> splitPainting(vector<vector<int>>& segments) {map<int, long long> m;vector<vector<long long>> ans;for(auto &s : segments){m[s[0]] += s[2];m[s[1]] -= s[2];}long long sum = 0;for(auto it = m.begin(); it != m.end(); ++it){int start = it->first, end;auto it1 = it;if(++it1 == m.end())break;elseend = it1->first;//下一个端点sum += it->second;//求各个端点的和if(sum) // 不为 0ans.push_back({start, end, sum});}return ans;}
};
388 ms 100.8 MB C++
我的CSDN博客地址 https://michael.blog.csdn.net/
长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!