这道题不难想到这样的dp。
dp[字符串si] = 以si为结尾的最大总权值。
dp[si] = max(dp[sj]) ,1.j < i,2.sj是si的子串。
对于第二个条件,是一个多模版串匹配的问题,可以用AC自动机。
预先O(m)把AC自动机建好,然后动态更新AC自动机上的dp值,
匹配的时候,指向字符的指针移动总共是O(m),
而每个单词,fail指针走寻找后缀却是O(m),即使改成后缀链接也是O(n)。too slow!
找到一个单词后,需要避免找后缀,动态维护这个单词的dp值。
一开始所有单词的dp都是0。
更新的时候,dp[si]需要更新所有dp[sj],其中si是sj的后缀。
如果父节点是子节点的后缀,把所有的单词(包括空后缀)连接起来将会得到以空字符串为根的后缀链接树。
这样就变成一个更新子树的问题,dfs把树形转成线性以后可以用线段树来维护。
询问单点最大值,区间更新O(logn)。
复杂度O(mlogn)
潜在的坑点:
1.Trie个结点可能对应多个单词,如果只更新了其中一个单词的线性区间RE...(map,前向链表,vector都可以搞
/********************************************************* * ------------------ * * author AbyssFish * **********************************************************/ #include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std;const int LEN = 3e5+5; const int MAXN = 2e4+5;int W[MAXN], S[MAXN]; int N; char s[LEN];int hd[LEN]; int nx[MAXN], to[MAXN], ec;void add_e(int u,int v) {to[ec] = v;nx[ec] = hd[u];hd[u] = ec++; } #define eachedge int i = hd[u]; ~i; i = nx[i] inline void init_g(int n){ memset(hd,-1,n<<2); ec = 0; } int L[MAXN], R[MAXN], dfs_clk; //string's linear suffix link tree id const int ST_SIZE = 1<<16; int dp[ST_SIZE];#define para int o = 1,int l = 0,int r = dfs_clk #define lo (o<<1) #define ro (o<<1|1) #define Tvar int md = (l+r)>>1; #define lsn lo,l,md #define rsn ro,md,r #define insd ql<=l&&r<=qrvoid build(para) {dp[o] = 0;if(r-l>1){Tvarbuild(lsn);build(rsn);} }void update(int ql,int qr,int v,para) {if(insd){dp[o] = max(dp[o],v);}else {Tvarif(ql < md) update(ql,qr,v,lsn);if(qr > md) update(ql,qr,v,rsn);} }int query(int p,para) {int re = 0;while(r-l>1){Tvarif(p<md){o = lo; r = md;}else {o = ro; l = md;}re = max(re,dp[o]);}return re; }const int sigma_size = 26, MAXND = LEN; struct AhoCorasick_automata {#define idx(x) (x-'a')int ch[MAXND][sigma_size];int f[MAXND];int last[MAXND];int cnt;int val[MAXND];int nx_val[MAXN];void add_v(int o,int x){nx_val[x] = val[o];val[o] = x;}int newNode(){int i = ++cnt;memset(ch[i],0,sizeof(ch[i]));val[i] = 0;return i;}void init(){cnt = -1; newNode();}int add(char *s,int id){int u = 0, i, c;for(i = 0; s[i]; i++){c = idx(s[i]);if(!ch[u][c]){ch[u][c] = newNode();}u = ch[u][c];}add_v(u,id);return i;}queue<int> q;void getFail(){int u, c, v, r;//f[0] = 0; last[0] = 0;for(c = 0; c < sigma_size; c++){u = ch[0][c];if(u){q.push(u);f[u] = 0;last[u] = 0;}}while(!q.empty()){r = q.front(); q.pop();for(c = 0; c < sigma_size; c++){u = ch[r][c];if(u){q.push(u);v = f[u] = ch[f[r]][c];last[u] = val[v] ? v : last[v];}else ch[r][c] = ch[f[r]][c];}}}void dfs(int u){int le = dfs_clk++;for(eachedge){dfs(to[i]);}int ri = dfs_clk;for(int id = val[u]; id; id = nx_val[id]){L[id] = le; R[id] = ri;}}void buildTree(){init_g(cnt+1);for(int u = 1; u <= cnt; u++)if(val[u]){add_e(last[u],u);}dfs_clk = 0;dfs(0);}void work(){int i,j,c,u,id;int ans = 0, mx;build();for(i = 1; i <= N; i++){u = 0; mx = 0;for(j = S[i-1]; j < S[i]; j++){c = idx(s[j]);u = ch[u][c];if(val[u]){id = val[u];mx = max(mx, query(L[id]));}else if(last[u]){id = val[last[u]];mx = max(mx, query(L[id]));}}if(W[i] > 0){ans = max(ans, mx += W[i]);update(L[i],R[i],mx);}}printf("%d\n",ans);}}ac;void solve() {scanf("%d",&N);ac.init();for(int i = 1; i <= N; i++){scanf("%s%d",s+S[i-1],W+i);S[i] = ac.add(s+S[i-1],i)+S[i-1];}ac.getFail();ac.buildTree();ac.work(); }//#define LOCAL int main() { #ifdef LOCALfreopen("data.txt","r",stdin); #endifint T, kas = 0; scanf("%d",&T);while(++kas <= T){printf("Case #%d: ",kas);solve();}return 0; }