在波士顿房价数据集上用随机森林回归填补缺失值
点击标题即可获取源代码和笔记
一、引入
我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中。
二、目标
在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。
1. 导入需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
2. 以波士顿数据集为例,导入完整的数据集并探索
dataset = load_boston()
dataset.data.shape
#总共506*13=6578个数据
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1]
3. 为完整数据集放入缺失值
#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
rng = np.random.RandomState(0)
missing_rate = 0.5
n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))
#np.floor向下取整,返回.0格式的浮点数
#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可
以利用索引来为数据中的任意3289个位置赋空值
#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
missing_features = rng.randint(0,n_features,n_missing_samples)
missing_samples = rng.randint(0,n_samples,n_missing_samples)
#missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)
#我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们#需要的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中
X_missing = X_full.copy()
y_missing = y_full.copy()
X_missing[missing_samples,missing_features] = np.nan
X_missing = pd.DataFrame(X_missing) #转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用
4. 使用0和均值填补缺失值
#使用均值进行填补
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
X_missing_mean = imp_mean.fit_transform(X_missing) #使用0进行填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
X_missing_0 = imp_0.fit_transform(X_missing)
5. 使用随机森林填补缺失值
基本思想:
任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来,用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。
对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,而它缺失的部分,只有特征没有标签,就是我们需要预测的部分。
1.特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
2.特征T不缺失的值:Y_train
3.特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
4.特征T缺失的值:未知,我们需要预测的Y_test
这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。
那如果数据中除了特征T之外,其他特征也有缺失值怎么办?
答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了,而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。遍历所有的特征后,数据就完整,不再有缺失值了。
X_missing_reg = X_missing.copy()
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values
for i in sortindex:#构建我们的新特征矩阵和新标签df = X_missing_regfillc = df.iloc[:,i]df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)#在新特征矩阵中,对含有缺失值的列,进行0的填补df_0 =SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(df)#找出我们的训练集和测试集Ytrain = fillc[fillc.notnull()]Ytest = fillc[fillc.isnull()]Xtrain = df_0[Ytrain.index,:]Xtest = df_0[Ytest.index,:]#用随机森林回归来填补缺失值rfc = RandomForestRegressor(n_estimators=100)rfc = rfc.fit(Xtrain, Ytrain)Ypredict = rfc.predict(Xtest)#将填补好的特征返回到我们的原始的特征矩阵中X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict
6. 对填补好的数据进行建模
#对所有数据进行建模,取得MSE结果
X = [X_full,X_missing_mean,X_missing_0,X_missing_reg]
mse = []
std = []
for x in X:estimator = RandomForestRegressor(random_state=0, n_estimators=100)scores = cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error',
cv=5).mean()mse.append(scores * -1)
7. 用所得结果画出条形图
x_labels = ['Full data','Zero Imputation','Mean Imputation','Regressor Imputation']
colors = ['r', 'g', 'b', 'orange']
plt.figure(figsize=(12, 6))
ax = plt.subplot(111)
for i in np.arange(len(mse)):ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')
ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9,right=np.max(mse) * 1.1)
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()