★Anaconda中创建、切换、删除虚拟环境(指定仓库)

指定仓库安装源文件

pip install 包名 -i http://pypi.douban.com/simple

可以换源列表:

阿里云 https://mirrors.aliyun.com/pypi/simple/ 
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/   #常用
豆瓣(douban) http://pypi.douban.com/simple/ 
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/   #常用

1 创建虚拟环境

conda create -n env_name python==3.7
eg:conda create -n py37 python==3.7
# 安装3.7版本的虚拟环境并设置名称为py37

2 查看当前有几个环境

conda info --env 

3 激活/禁用环境

# linux 启用虚拟环境
source activate 环境名称
# linux 禁用/退出虚拟环境
source deactivate 环境名称# window 启用虚拟环境
activate 环境名称
# window 禁用/退出虚拟环境
deactivate 环境名称

4 删除环境

conda remove -n 环境名称 --all 
注:删除某个环境前,先要将其source deactivateconda remove -n your_env_name --all  #删除conda remove --name your_env_name package_name  #删除某个包

5 jupyter notebook配置虚拟环境

# jupyter notebook如果不显示虚拟环境可能要安装ipykernel
conda install ipykernel# windows添加虚拟环境到jupyterpython -m ipykernel install --user --name=py37

6 安装pytorch

1、创建虚拟环境

打开anaconda操作窗口,输入如下命令:

conda create -n  torch14 python=3.6

torch14为虚拟环境名称

conda activate torch14即可进入创建的虚拟环境中。

2. 添加清华源。这是快速安装的关键所在。

添加清华通道

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/


3. 安装 pytorch

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1
# 请注意,此处无“ -c pytorch”,“ -c pytorch”为从官网下载,速度简直不忍直视。

4、等待片刻即可安装成功。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469737.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎样修改t3服务器地址,怎样修改t3服务器地址

怎样修改t3服务器地址 内容精选换一换华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。Atlas 200 DK开发者板支持通过USB端口或者网线与Ubuntu服务器…

结构体中.和-的用法

#include"stdio.h" #include"stdlib.h"struct linkwqf{int age;char * name;struct linkwqf* next; }; struct linkwqf linkwww1;/*第一种声明结构体类型变量的方法 这种方法意义不大*/ typedef struct linkwqf linkwww2;/*第一种声明结构体类型变量的方…

智慧交通day02-车流量检测实现03:辅助功能(交并比and候选框的表现形式)

学习目标 能够实现两个目标框的交并比 了解候选框在多目标跟踪中的表达方式及相应转换方法 IOU是交并比(Intersection-over-Union)是目标检测中使用的一个概念是产生的候选框(candidate bound)与原标记框(ground tru…

电脑pro,拒绝等待!七彩虹全新设计师电脑ProMaster H1为创意加速

新年伊始,七彩虹科技正式发布了全新设计师领域整机系列:Colorful ProMaster(专业大师)。并同时公布了旗下第一款设计师电脑整机:Colorful ProMaster H1。其采用全新三面环绕布艺设计要素,搭载NVIDIA GeForce RTX Studio和英特尔傲…

智慧交通day02-车流量检测实现04:卡尔曼滤波器

1、背景介绍 卡尔曼滤波(Kalman)无论是在单目标还是多目标领域都是很常用的一种算法,我们将卡尔曼滤波看做一种运动模型,用来对目标的位置进行预测,并且利用预测结果对跟踪的目标进行修正,属于自动控制理论…

java 简单类继承

class Person {String name;int age;public String talk(){return "我是:"this.name",今年:"this.age"岁";}public Person()/* 无参数的构造函数*/{System.out.println("1.public Person(){}");} } class Stude…

成功解决 ProxyError: Conda cannot proceed due to an error in your proxy configuration

给win10的ubuntu1804安装anaconda, 执行conda create -n daily python3.7创建虚拟环境时报错 Collecting package metadata (current_repodata.json): failedProxyError: Conda cannot proceed due to an error in your proxy configuration. Check for typos and other confi…

android 4.2修改设置菜单的背景颜色

设置中的背景主要来主题的设置, 在4.X后, android添加了新的主题: Holo 从Settings/AndroidManifest.xml中找到: Xml代码 <application android:label"string/settings_label" android:icon"mipmap/ic_launcher_settings" android…

智慧交通day02-车流量检测实现05:卡尔曼滤波器实践(小车模型)

1.filterpy FilterPy是一个实现了各种滤波器的Python模块&#xff0c;它实现著名的卡尔曼滤波和粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。其中的主要模块包括&#xff1a; filterpy.kalman 该模块主要实现了各种卡尔曼滤波器&#xff0c;包括常见的线性卡尔曼滤…

Linux多线程——使用互斥量同步线程

前文再续&#xff0c;书接上一回&#xff0c;在上一篇文章&#xff1a;Linux多线程——使用信号量同步线程中&#xff0c;我们留下了一个如何使用互斥量来进行线程同步的问题&#xff0c;本文将会给出互斥量的详细解说&#xff0c;并用一个互斥量解决上一篇文章中&#xff0c;要…

智慧交通day02-车流量检测实现05:小车匀速案例

""" 现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示&#xff1a;导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化&#xff1a;观察参数的变化与结果 """#导入包 from matplotlib import pyplo…

排座椅

题目描述 上课的时候总会有一些同学和前后左右的人交头接耳&#xff0c;这是令小学班主任十分头疼的一件事情。不过&#xff0c;班主任小雪发现了一些有趣的现象&#xff0c;当同学们的座次确定下来之后&#xff0c;只有有限的D对同学上课时会交头接耳。同学们在教室中坐成了M行…

智慧交通day02-车流量检测实现05:小车匀加速案例

""" 现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示&#xff1a;导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化&#xff1a;观察参数的变化与结果 """#导入包 from matplotlib import pyplo…

智慧交通day02-车流量检测实现06:目标估计模型-卡尔曼滤波

在这里我们主要完成卡尔曼滤波器进行跟踪的相关内容的实现。 初始化&#xff1a;卡尔曼滤波器的状态变量和观测输入更新状态变量根据状态变量预测目标的边界框初始化&#xff1a; 状态量x的设定是一个七维向量&#xff1a; 分别表示目标中心位置的x,y坐标&#xff0c;面积s和当…

python或anaconda下安装opencv提示Error:No matching distribution found for opencv

python或anaconda下安装opencv提示Error&#xff1a;No matching distribution found for opencv 错误提示&#xff1a; ERROR: Could not find a version that satisfies the requirement python-opencv (from versions: none) ERROR: No matching distribution found for p…

iOS 10 的坑:新机首次安装 app,请求网络权限“是否允许使用数据”(转)

转载自&#xff1a;文&#xff0f;戴仓薯&#xff08;简书作者&#xff09;原文链接&#xff1a;http://www.jianshu.com/p/6cbde1b8b922症状 iOS 10 之后&#xff0c;陆陆续续地有用户联系我们&#xff0c;说新机第一次安装、第一次启动的时候&#xff0c;app 首屏一片空白&am…

智慧交通day02-车流量检测实现06:目标估计模型-卡尔曼滤波(汇总)

from __future__ import print_function from numba import jit import numpy as np from scipy.optimize import linear_sum_assignment from filterpy.kalman import KalmanFilter#计算IOU&#xff08;交并比&#xff09; jit def iou(bb_test,bb_gt):"""在两…

Redis入门指南(第2版) Redis设计思路学习与总结

https://www.qcloud.com/community/article/222 宋增宽&#xff0c;腾讯工程师&#xff0c;16年毕业加入腾讯&#xff0c;从事海量服务后台设计与研发工作&#xff0c;现在负责QQ群后台等项目&#xff0c;喜欢研究技术&#xff0c;并思考技术演变&#xff0c;专注于高并发业务架…

智慧交通day02-车流量检测实现07:匈牙利算法

匈牙利算法&#xff08;Hungarian Algorithm&#xff09;与KM算法&#xff08;Kuhn-Munkres Algorithm&#xff09;是用来解决多目标跟踪中的数据关联问题&#xff0c;匈牙利算法与KM算法都是为了求解二分图的最大匹配问题。 有一种很特别的图&#xff0c;就做二分图&#xff0…

非线性回归(Non-linear Regression)学习笔记

非线性回归&#xff08;Non-linear Regression&#xff09; 1.概率: 1.1定义概率Probability:对一件事情发生的可能性的衡量 1.2范围 0<P<1 1.3计算方法: 1.3.1根据个人置信 1.3.2根据历史数据 1.3.3根据模拟数据 1.4条件概率:&#xff08;A发生的条件下B发生的概率&…