【Pytorch神经网络理论篇】 17 循环神经网络结构:概述+BP算法+BPTT算法

 

同学你好!本文章于2021年末编写,获得广泛的好评!

故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现

Pytorch深度学习·理论篇(2023版)目录地址为:

CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!https://v9999.blog.csdn.net/article/details/127587345欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

1 循环神经网络结构概述

循环神经网络(Recurrent Neural Network,RNN)是一个具有记忆功能的网络模型。它可以发现样本彼此之间的相互关系。它多用于处理带有序列特征的样本数据。

1.1 生物大脑中的循环神经网络

当获得“我找你来玩游”信息后,大脑的语言模型会自动预测后一个字为“戏”,而不是“乐”“泳”等其他字。

每个预测的结果都会放到下个输入里面进行运算,与下一次的食人鱼一起来生成下一次的结果。

链式地、有顺序地存储信息”很节省空间,对于中间状态的序列,大脑没有选择直接记住,而是存储计算方达。当我们需要取值时,直接将具体的数据输入,通过计算得出相应的给果。

1.2 循环神经网络的应用领域

对于序列化的特征任务,适合用循环神经网路来解决。这类任务包括情感分析、关键字提取、语音识别、机器翻译和股票分析等。

1.3 循环神经网络的正向传播过程

假设有3个时序t1,t2,t3,如图7-26所示,循环神经网络的处理过程可以分解成以下3个步骤:
(1)开始时t1通过自己的输入权重和0作为输入,生成了out1;
(2)out1通过自己的权重生成了h1,然后和t2与经过输入权重转化后一起作为输入,生成了out2;
(3)out2通过同样的隐藏层权重生成了h2,然后和t3经过输入权重转化后一起作为输入,生成了out3。
使得模型的结果既有该样本之前序列的信息,又含有该样本身的数据信息,从而使网络具有记忆功能。

2 BP算法与BPTT算法的原理剖析

2.1 BP算法==》卷积神经网络

假设有一个包含一个隐藏层的神经网络,隐藏层只有一个节点。该神经网络在BP算法中具体的实现过程如下。
(1)有一个批次的数据,含有3个数据A、B、C,批次中每个样本有两个数(x1、x2)通过权重(w1、w2)来到隐藏层H并生成批次h,如图7-27中w1和w2所在的两条直线方向。
(2)该批次的h通过隐藏层权重p1生成最终的输出结果y。
(3)y与最终的标签p比较,生成输出层误差loss(y,p)。
(4)loss(y,p)与生成y的导数相乘,得到DeL_y。DeL_y为输出层所需要的修改值。
(5)将h的转置与DeL_y相乘得到DeL_p1,这是源于h与p1相乘得到的y(见第2步.
(6)最终将该批次的DeL_p1,求和并更新到p1。
(7)同理,再将误差反向传递到上一层:计算Del_h。得到Del_h后再计算权重(w1,w2)的Del值并更新。

2.2 BPTT算法(BP算法+序列序列)==》循环神经网络

在图7-28中,同样是一个批次的数据ABC,按顺序进入循环神经网络。正向传播的实例是,B正在进入神经网络的过程,可以看到A的h参与了进来,一起经过p1生成了B的y。因为C还没有进入,为了清晰,所以这里用灰色(虚线方框)来表示。

当所有块都进入之后,会将p标签与输出进行Del_y的运算。由于C块中的y值是最后生成的,因此我们先从C块开始对h的输出传递误差Del_h。

图7-28中的反向传播是表示C块已经反向传播完成,开始B块反向传播的状态,可以看到B块Del_h是由B块的Del_y和C块的Del_h(图7-28中的fur _Del_h)通过计算得来的。

2.3 对比

这就是与BP算法不同的地方(在BP算法中Del_h直接与自己的Del_y相关,不会与其他的值有联系)。作为一个批次的数据,正向传播时是沿着4BC的顺序升当反向传播时,就按照正向传播的相反顺序接照每个节点的CBA顺序,挨个计算并传递梯度。

2.4 代码代补充  P149

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Pytorch神经网络理论篇】 18 循环神经网络结构:LSTM结构+双向RNN结构

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 19 循环神经网络训练语言模型:语言模型概述+NLP多项式概述

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

常见排序算法的C#实现

排序算法常见的有直接排序、冒泡排序、快速排序、基数排序、归并排序等&#xff0c;下面是实现的代码&#xff0c;仅供参考。 #region DirectSort/// <summary>/// 直接排序./// 第一次从R[0]~R[n-1]中选取最小值&#xff0c;与R[0]交换&#xff0c;/// 第二次从R[1]~R[n…

【Pytorch神经网络实战案例】11 循环神经网络结构训练语言模型并进行简单预测

1 语言模型步骤 简单概述&#xff1a;根据输入内容&#xff0c;继续输出后面的句子。 1.1 根据需求拆分任务 (1)先对模型输入一段文字&#xff0c;令模型输出之后的一个文字。(2)将模型预测出来的文字当成输入&#xff0c;再放到模型里&#xff0c;使模型预测出下一个文字&…

【Pytorch神经网络理论篇】 20 神经网络中的注意力机制

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络实战案例】12 利用注意力机制的神经网络实现对FashionMNIST数据集图片的分类

1、掩码模式&#xff1a;是相对于变长的循环序列而言的&#xff0c;如果输入的样本序列长度不同&#xff0c;那么会先对其进行对齐处理&#xff08;对短序列补0&#xff0c;对长序列截断&#xff09;&#xff0c;再输入模型。这样&#xff0c;模型中的部分样本中就会有大量的零…

爬虫实战学习笔记_4 网络请求urllib3模块:发送GET/POST请求实例+上传文件+IP代理+json+二进制+超时

1 urllib3模块简介 urllib3是一个第三方的网络请求模块&#xff08;单独安装该模块&#xff09;&#xff0c;在功能上比Python自带的urllib强大。 1.1了解urllib3 urllib3库功能强大&#xff0c;条理清晰的用于HTTP客户端的python库&#xff0c;提供了很多Python标准库里所没…

C. Jon Snow and his Favourite Number DP + 注意数值大小

http://codeforces.com/contest/768/problem/C 这题的数值大小只有1000&#xff0c;那么可以联想到&#xff0c;用数值做数组的下标&#xff0c;就是类似于计数排序那样子。。 这样就可以枚举k次操作&#xff0c;然后for (int i 0; i < 1025; i)&#xff0c;也就是O(1000 *…

【Pytorch神经网络理论篇】 21 信息熵与互信息:联合熵+条件熵+交叉熵+相对熵/KL散度/信息散度+JS散度

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 22 自编码神经网络:概述+变分+条件变分自编码神经网络

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络实战案例】13 构建变分自编码神经网络模型生成Fashon-MNST模拟数据

1 变分自编码神经网络生成模拟数据案例说明 变分自编码里面真正的公式只有一个KL散度。 1.1 变分自编码神经网络模型介绍 主要由以下三个部分构成&#xff1a; 1.1.1 编码器 由两层全连接神经网络组成&#xff0c;第一层有784个维度的输入和256个维度的输出&#xff1b;第…

【Pytorch神经网络实战案例】14 构建条件变分自编码神经网络模型生成可控Fashon-MNST模拟数据

1 条件变分自编码神经网络生成模拟数据案例说明 在实际应用中&#xff0c;条件变分自编码神经网络的应用会更为广泛一些&#xff0c;因为它使得模型输出的模拟数据可控&#xff0c;即可以指定模型输出鞋子或者上衣。 1.1 案例描述 在变分自编码神经网络模型的技术上构建条件…

hibernate持久化对象

转载于:https://www.cnblogs.com/jianxin-lilang/p/6440101.html

【Pytorch神经网络理论篇】 23 对抗神经网络:概述流程 + WGAN模型 + WGAN-gp模型 + 条件GAN + WGAN-div + W散度

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络实战案例】15 WGAN-gp模型生成Fashon-MNST模拟数据

1 WGAN-gp模型生成模拟数据案例说明 使用WGAN-gp模型模拟Fashion-MNIST数据的生成&#xff0c;会使用到WGAN-gp模型、深度卷积GAN(DeepConvolutional GAN&#xff0c;DCGAN)模型、实例归一化技术。 1.1 DCGAN中的全卷积 WGAN-gp模型侧重于GAN模型的训练部分&#xff0c;而DCG…

Android启动过程深入解析

转载自&#xff1a;http://blog.jobbole.com/67931/ 当按下Android设备电源键时究竟发生了什么&#xff1f;Android的启动过程是怎么样的&#xff1f;什么是Linux内核&#xff1f;桌面系统linux内核与Android系统linux内核有什么区别&#xff1f;什么是引导装载程序&#xff1…

【Pytorch神经网络实战案例】16 条件WGAN模型生成可控Fashon-MNST模拟数据

1 条件GAN前置知识 条件GAN也可以使GAN所生成的数据可控&#xff0c;使模型变得实用&#xff0c; 1.1 实验描述 搭建条件GAN模型&#xff0c;实现向模型中输入标签&#xff0c;并使其生成与标签类别对应的模拟数据的功能&#xff0c;基于WGAN-gp模型改造实现带有条件的wGAN-…

Android bootchart(二)

这篇文章讲一下MTK8127开机启动的时间 MTK8127发布版本开机时间大约在&#xff12;&#xff10;秒左右&#xff0c;如果发现开机时间变长&#xff0c;大部分是因为加上了客户订制的东西&#xff0c;代码累赘太多了。 &#xff11;、下面看一下&#xff2d;&#xff34;&#…

Android Camera框架

总体介绍 Android Camera 框架从整体上看是一个 client/service 的架构, 有两个进程: client 进程,可以看成是 AP 端,主要包括 JAVA 代码与一些 native c/c++代码; service 进 程,属于服务端,是 native c/c++代码,主要负责和 linux kernel 中的 camera driver 交互,搜集 li…

【Pytorch神经网络实战案例】17 带W散度的WGAN-div模型生成Fashon-MNST模拟数据

1 WGAN-div 简介 W散度的损失函数GAN-dv模型使用了W散度来替换W距离的计算方式&#xff0c;将原有的真假样本采样操作换为基于分布层面的计算。 2 代码实现 在WGAN-gp的基础上稍加改动来实现&#xff0c;重写损失函数的实现。 2.1 代码实战&#xff1a;引入模块并载入样本-…