【Pytorch神经网络实战案例】12 利用注意力机制的神经网络实现对FashionMNIST数据集图片的分类

1、掩码模式:是相对于变长的循环序列而言的,如果输入的样本序列长度不同,那么会先对其进行对齐处理(对短序列补0,对长序列截断),再输入模型。这样,模型中的部分样本中就会有大量的零值。为了提升运算性能,需要以掩码的方式将不需要的零值去掉,并保留非零值进行计算,这就是掩码的作用
2、均值模式:正常模式对每个维度的所有序列计算注意力分数,而均值模式对每个维度注意力分数计算平均值。均值模式会平滑处理同一序列不同维度之间的差异,认为所有维度都是平等的,将注意力用在序列之间。这种方式更能体现出序列的重要性。


 代码 Attention_cclassification.py

import torchvision
import torchvision.transforms as tranforms
import pylab
import torch
from matplotlib import pyplot as plt
import numpy as np
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'  # 可能是由于是MacOS系统的原因data_dir = './fashion_mnist'
tranform = tranforms.Compose([tranforms.ToTensor()])
train_dataset = torchvision.datasets.FashionMNIST(root=data_dir,train=True,transform=tranform,download=True)
print("训练数据集条数",len(train_dataset))
val_dataset = torchvision.datasets.FashionMNIST(root=data_dir, train=False, transform=tranform)
print("测试数据集条数",len(val_dataset))
im = train_dataset[0][0]
im = im.reshape(-1,28)
pylab.imshow(im)
pylab.show()
print("该图片的标签为:",train_dataset[0][1])## 数据集的制造
batch_size = 10
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)def imshow(img):print("图片形状:",np.shape(img))npimg = img.numpy()plt.axis('off')plt.imshow(np.transpose(npimg,(1,2,0)))classes = ('T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle_Boot')
sample = iter(train_loader)
images,labels = sample.next()
print("样本形状:",np.shape(images))
print("样本标签",labels)
imshow(torchvision.utils.make_grid(images,nrow=batch_size))
print(','.join('%5s' % classes[labels[j]] for j in range(len(images))))class myLSTMNet(torch.nn.Module): #定义myLSTMNet模型类,该模型包括 2个RNN层和1个全连接层def __init__(self,in_dim, hidden_dim, n_layer, n_class):super(myLSTMNet, self).__init__()# 定义循环神经网络层self.lstm = torch.nn.LSTM(in_dim, hidden_dim, n_layer, batch_first=True)self.Linear = torch.nn.Linear(hidden_dim * 28, n_class)  # 定义全连接层self.attention = AttentionSeq(hidden_dim, hard=0.03) # 定义注意力层,使用硬模式的注意力机制def forward(self, t):  # 搭建正向结构t, _ = self.lstm(t)  # 使用LSTM对象进行RNN数据处理t = self.attention(t)   # 对循环神经网络结果进行注意力机制的处理,将处理后的结果变形为二维数据,传入全连接输出层。1t = t.reshape(t.shape[0], -1) # 对循环神经网络结果进行注意力机制的处理,将处理后的结果变形为二维数据,传入全连接输出层。2out = self.Linear(t)  # 进行全连接处理return outclass AttentionSeq(torch.nn.Module):def __init__(self, hidden_dim, hard=0.0): # 初始化super(AttentionSeq, self).__init__()self.hidden_dim = hidden_dimself.dense = torch.nn.Linear(hidden_dim, hidden_dim)self.hard = harddef forward(self, features, mean=False): # 类的处理方法# [batch,seq,dim]batch_size, time_step, hidden_dim = features.size()weight = torch.nn.Tanh()(self.dense(features)) # 全连接计算# 计算掩码,mask给负无穷使得权重为0mask_idx = torch.sign(torch.abs(features).sum(dim=-1))# mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step, hidden_dim)mask_idx = mask_idx.unsqueeze(-1).repeat(1, 1, hidden_dim)# 将掩码作用在注意力结果上# torch.where函数的意思是按照第一参数的条件对每个元素进行检查,如果满足,那么使用第二个参数里对应元素的值进行填充,如果不满足,那么使用第三个参数里对应元素的值进行填充。# torch.ful_likeO函数是按照张量的形状进行指定值的填充,其第一个参数是参考形状的张量,第二个参数是填充值。weight = torch.where(mask_idx == 1, weight,torch.full_like(mask_idx, (-2 ** 32 + 1))) # 利用掩码对注意力结果补0序列填充一个极小数,会在Softmax中被忽略为0weight = weight.transpose(2, 1)# 必须对注意力结果补0序列填充一个极小数,千万不能填充0,因为注意力结果是经过激活函数tanh()计算出来的,其值域是 - 1~1, 在这个区间内,零值是一个有效值。如果填充0,那么会对后面的Softmax结果产生影响。填充的值只有远离这个有效区间才可以保证被Softmax的结果忽略。weight = torch.nn.Softmax(dim=2)(weight) # 计算注意力分数if self.hard != 0:  # hard modeweight = torch.where(weight > self.hard, weight, torch.full_like(weight, 0))if mean: # 支持注意力分数平均值模式weight = weight.mean(dim=1)weight = weight.unsqueeze(1)weight = weight.repeat(1, hidden_dim, 1)weight = weight.transpose(2, 1)features_attention = weight * features # 将注意力分数作用于特征向量上return features_attention # 返回结果#实例化模型对象
network = myLSTMNet(28, 128, 2, 10)  # 图片大小是28x28,28:输入数据的序列长度为28。128:每层放置128个LSTM Cell。2:构建两层由LSTM Cell所组成的网络。10:最终结果分为10类。
#指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
network.to(device)
print(network)  #打印网络criterion = torch.nn.CrossEntropyLoss()  # 实例化损失函数类
optimizer = torch.optim.Adam(network.parameters(), lr=0.01)for epoch in range(2): # 数据集迭代2次running_loss = 0.0for i, data in enumerate(train_loader, 0): # 循环取出批次数据inputs, labels = datainputs = inputs.squeeze(1) # 由于输入数据是序列形式,不再是图片,因此将通道设为1inputs, labels = inputs.to(device), labels.to(device) # 指定设备optimizer.zero_grad() # 清空之前的梯度outputs = network(inputs)loss = criterion(outputs, labels) # 计算损失loss.backward()  #反向传播optimizer.step() #更新参数running_loss += loss.item()if i % 1000 == 999:print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.0
print('Finished Training')#使用模型
dataiter = iter(test_loader)
images, labels = dataiter.next()
inputs, labels = images.to(device), labels.to(device)imshow(torchvision.utils.make_grid(images,nrow=batch_size))
print('真实标签: ', ' '.join('%5s' % classes[labels[j]] for j in range(len(images))))
inputs = inputs.squeeze(1)
outputs = network(inputs)
_, predicted = torch.max(outputs, 1)print('预测结果: ', ' '.join('%5s' % classes[predicted[j]]for j in range(len(images))))#测试模型
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():for data in test_loader:images, labels = dataimages = images.squeeze(1)inputs, labels = images.to(device), labels.to(device)outputs = network(inputs)_, predicted = torch.max(outputs, 1)predicted = predicted.to(device)c = (predicted == labels).squeeze()for i in range(10):label = labels[i]class_correct[label] += c[i].item()class_total[label] += 1sumacc = 0
for i in range(10):Accuracy = 100 * class_correct[i] / class_total[i]print('Accuracy of %5s : %2d %%' % (classes[i], Accuracy ))sumacc =sumacc+Accuracy
print('Accuracy of all : %2d %%' % ( sumacc/10. ))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

echarts自学笔记

学习echarts的总结 一、图表的实现 (1)首先将echarts.js引入为echarts提供一个DOM容器(具有宽高)为echarts配置参数:第一步:初始化DOM容器,用echarts.init()函数第二步: 配置数据选项var option{ title:{},//图表的标…

爬虫实战学习笔记_4 网络请求urllib3模块:发送GET/POST请求实例+上传文件+IP代理+json+二进制+超时

1 urllib3模块简介 urllib3是一个第三方的网络请求模块(单独安装该模块),在功能上比Python自带的urllib强大。 1.1了解urllib3 urllib3库功能强大,条理清晰的用于HTTP客户端的python库,提供了很多Python标准库里所没…

Android wakelock 自上而下浅析

Wake Lock是一种锁的机制, 只要有人拿着这个锁,系统就无法进入休眠,可以被用户态程序和内核获得. 这个锁可以是有超时的或者是没有超时的,超时的锁会在时间过去以后自动解锁. 如果没有锁了或者超时了, 内核就会启动休眠的那套机制来进入休眠.PowerManager.WakeLock 有加锁和解锁…

C. Jon Snow and his Favourite Number DP + 注意数值大小

http://codeforces.com/contest/768/problem/C 这题的数值大小只有1000&#xff0c;那么可以联想到&#xff0c;用数值做数组的下标&#xff0c;就是类似于计数排序那样子。。 这样就可以枚举k次操作&#xff0c;然后for (int i 0; i < 1025; i)&#xff0c;也就是O(1000 *…

【Pytorch神经网络理论篇】 21 信息熵与互信息:联合熵+条件熵+交叉熵+相对熵/KL散度/信息散度+JS散度

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

vim 设置支持鼠标

在vim模式 下 :set mousea 也可以把上面的语句去掉起始的冒号放到 .vimrc 文件中 打开一个vim 输入:echo $VIM 这里就会打印出vimrc的位置 vim的一些配置相关 http://www.cnblogs.com/ma6174/archive/2011/12/10/2283393.html

POJ 2395 Out of Hay

http://poj.org/problem?id2395 裸最小生成树 输出树中最大cost的边值 直接prim 1 #include <iostream>2 #include <stdio.h>3 #include <string.h>4 #include <queue>5 #include <algorithm>6 #define READ() freopen("in.txt", &qu…

【Pytorch神经网络理论篇】 22 自编码神经网络:概述+变分+条件变分自编码神经网络

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

Android关机闹钟实现

时间转换网站:http://tool.chinaz.com/Tools/unixtime.aspx 1、apk层 这个还是比较简单的,百度一下就可以看到apk的代码,我之前也有贴出来过还是看一下核心代码吧。 写好的apk(里面有Android.mk文件 加入system/app/下面进行编译):http://download.csdn.net/detail/…

CI开发笔记

CI中的mvc&#xff1a; 访问url使用的是passinfo//就是类似一个文件夹的方式 入口文件.php/控制器/方法&#xff08;动作&#xff09; 控制器&#xff1a; 1.不用加后缀 直接一个单词.php 文件名全部小写 2.控制器是直接或者间接的继承自CI_Controller 3.控制器中对方法的要求…

【Pytorch神经网络实战案例】13 构建变分自编码神经网络模型生成Fashon-MNST模拟数据

1 变分自编码神经网络生成模拟数据案例说明 变分自编码里面真正的公式只有一个KL散度。 1.1 变分自编码神经网络模型介绍 主要由以下三个部分构成&#xff1a; 1.1.1 编码器 由两层全连接神经网络组成&#xff0c;第一层有784个维度的输入和256个维度的输出&#xff1b;第…

linux tar 使用

tar tar 主要用于创建归档文件&#xff0c;和解压归档文件&#xff0c;其本身是没有压缩功能的&#xff0c;但可以调用 gzip 、 bzip2 进行压缩处理。 参数解释&#xff1a; -c 创建归档 -x 解压归档 -v 显示处理过程 -f 目标文件&#xff0c;其后必须紧跟 目标文件 -j 调用 bz…

【Pytorch神经网络实战案例】14 构建条件变分自编码神经网络模型生成可控Fashon-MNST模拟数据

1 条件变分自编码神经网络生成模拟数据案例说明 在实际应用中&#xff0c;条件变分自编码神经网络的应用会更为广泛一些&#xff0c;因为它使得模型输出的模拟数据可控&#xff0c;即可以指定模型输出鞋子或者上衣。 1.1 案例描述 在变分自编码神经网络模型的技术上构建条件…

hibernate持久化对象

转载于:https://www.cnblogs.com/jianxin-lilang/p/6440101.html

MTK8127添加一个新的camera驱动

简单总结一下 mtk 的all in one 这个文档台强大了,如果第一次配置摄像头,可以找这个文档来看。 1、kernel层添加 +mediatek/custom/mid713l_lp_lvds/kernel/imgsensor/bf3703_yuv/ 驱动文件夹 +bf3703yuv_CameraCustomized.h +bf3703yuv_Camera_Sensor_para.h +bf3…

【Pytorch神经网络理论篇】 23 对抗神经网络:概述流程 + WGAN模型 + WGAN-gp模型 + 条件GAN + WGAN-div + W散度

同学你好&#xff01;本文章于2021年末编写&#xff0c;获得广泛的好评&#xff01; 故在2022年末对本系列进行填充与更新&#xff0c;欢迎大家订阅最新的专栏&#xff0c;获取基于Pytorch1.10版本的理论代码(2023版)实现&#xff0c; Pytorch深度学习理论篇(2023版)目录地址…

[haoi2011]防线修建

动态加点维护凸包。 论STL的熟练运用。 #include<cstdio> #include<algorithm> #include<cstring> #include<vector> #include<iostream> #include<string> #include<map> #include<set> #include<cstdlib> #include<…

【Pytorch神经网络实战案例】15 WGAN-gp模型生成Fashon-MNST模拟数据

1 WGAN-gp模型生成模拟数据案例说明 使用WGAN-gp模型模拟Fashion-MNIST数据的生成&#xff0c;会使用到WGAN-gp模型、深度卷积GAN(DeepConvolutional GAN&#xff0c;DCGAN)模型、实例归一化技术。 1.1 DCGAN中的全卷积 WGAN-gp模型侧重于GAN模型的训练部分&#xff0c;而DCG…

Android启动过程深入解析

转载自&#xff1a;http://blog.jobbole.com/67931/ 当按下Android设备电源键时究竟发生了什么&#xff1f;Android的启动过程是怎么样的&#xff1f;什么是Linux内核&#xff1f;桌面系统linux内核与Android系统linux内核有什么区别&#xff1f;什么是引导装载程序&#xff1…

android 解析网络数据(JSON)

解析json数据&#xff0c;获取你需要的信息 首先在manifest中添加允许访问网络的权限信息 <uses-permission android:name"android.permission.INTERNET"/> Main package com.chuanxidemo.shaoxin.demo08;import android.os.Bundle; import android.support.an…