用于弥散加权MRI的关节各向异性维纳滤光片研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

该模块用于减少扩散加权磁共振成像(DW-MRI)数据上的Rician噪声,以提高估计扩散张量图像或ODF场的准确性。请注意,此方法适用于处理扩散加权MRI数据集,而不适用于解剖MRI或其他类型的MRI数据。此软件可以在估计扩散张量体积或ODF场之前,对DW-MRI数据进行噪声降低。

该软件使用Rician噪声模型,在最小均方误差准则下对图像进行滤波。它以与正在处理的方向最接近的N个梯度方向一起进行滤波,以改善结果。在每个3D空间位置上,无噪声信号被视为n维向量,必须使用LMMSE方法(最小均方误差估计)从一组受损测量中进行估计。为了完成这一点,需要估计无噪声向量的协方差矩阵以及信号与噪声之间的交叉协方差,这是在考虑图像形成过程的情况下完成的。

所有这些估计值都作为样本估计值在"形状邻域"中执行,该邻域由根据体素的结构相似性提取的权重定义。这遵循非局部均值滤波器的相同思想。NLM(非局部均值)距离是在特征空间中计算的,它比较梯度图像在一组三个独立方向上的投影创建的RGB图像的局部平均值和梯度。

通过使用该模块进行DW-MRI数据的噪声降低,可以提高在扩散张量图像或ODF场估计中的准确性。这对于研究扩散过程、纤维束成像等领域,具有重要的意义。同时,该软件的算法基于先进的数据处理方法,可以在处理过程中考虑图像的结构和特征,从而更好地保留和恢复细节信息。

需要注意的是,该模块具体应用的可行性和效果与输入数据的特性以及其他实际因素有关。因此,在使用该模块之前,建议进行应用实验和评估,以确保其适用性和效果符合预期。

📚2 运行结果

 

部分代码:

disp(['Whole Wiener version without mask and all gradients completed in ',num2str(etime),' seconds']);

slice = 33;
grad  = 3;

figure(1);

subplot(2,2,1);
imshow(DWInoisy(:,:,slice,grad),[]);
title('Original noisy slice');

subplot(2,2,2);
imshow(DWIfiltered1(:,:,slice,grad),[]);
title('UNLM filter without LMMSE correction');

subplot(2,2,3);
imshow(DWIfiltered3(:,:,slice,grad),[]);
title('Whole filter mixing all gradients');

subplot(2,2,4);
imshow(DWIfiltered4(:,:,slice,grad),[]);
title('Whole filter mixing only part of the gradients');

save('test_data_jaLMMSE','DWInoisy','Grads','sigma','mask');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Antonio Tristan-Vega and Santiago Aja-Fernandez, 'DWI filtering using joint information for DTI and HARDI', Medical Image Analysis, Volume 14, Issue 2, Pages 205-218. 2010;

[2] Antonio Tristan-Vega, Veronique Brion, Gonzalo Vegas-Sanchez-Ferrero, and Santiago Aja-Fernandez, 'Merging squared-magnitude approaches to DWI denoising: An adaptive Wiener filter tuned to the anatomical contents of the image', In Proceedings of IEEE EMBC 2013, pp. 507-510. Osaka (Japan). 2013,

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/46910.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c++基础系列:表达式

表达式 基础算术运算符逻辑与关系运算符赋值运算符递增和递减运算符成员访问运算符条件运算符位运算符sizeof运算符逗号运算符类型转换运算符优先级表

cout还是printf?C++教程 - How to C++系列专栏第4篇

关于专栏 这个专栏是优质的C教程专栏,如果你还没看过第一篇,点击这里去第0篇 本专栏一致使用操作系统:macOS Ventura,代码编辑器:CLion,C编译器:Clang 感谢一路相伴的朋友们,感谢…

三款远程控制软件对比,5大挑选指标:安全、稳定、易用、兼容、功能

陈老老老板🤴 🧙‍♂️本文专栏:生活(主要讲一下自己生活相关的内容)生活就像海洋,只有意志坚强的人,才能到达彼岸。 🧙‍♂️本文简述:三款远程控制软件对比,5大挑选指标&#xff1…

Mybatis之执行插入语句后返回主键id的三种方式

在工程应用中,通常会遇到多表更新操作,在集成mybatis中需要在执行插入语句后返回主键id进行后续的表更新操作,下面对其实现的方式记录分享出来,以应对不同的应用场景。 1、在xml文件中应用useGeneratedKeys和keyProperty 在xml文…

spring如何进行依赖注入,通过set方法把Dao注入到serves

1、选择Generate右键鼠标 你在service层后面方法的这些: 2、UserService配置文件的写法是怎样的: 3、我们在UserController中执行一下具体写法: 最后我们执行一下 : 4、这里可能出现空指针,因为你当前web层,因为你new这个对象根…

macos 使用vscode 开发python 爬虫(开发二)

以下是一个示例,用于爬取一个公开的示例网站(http://books.toscrape.com),并提取书籍的标题和价格: import requests from bs4 import BeautifulSoup# 发起请求并获取网页内容 url 可以用上面的链接🔗 re…

示例1:FreeRTOS移植详解_基于HAL库工程

1、开发环境 (1)Keil MDK: V5.38.0.0 (2)STM32CubeMX: V6.8.1 (3)MCU: STM32F103C8(F1系列软仿真最方便) (4)ARM编译器:V5(使用V6编译会报错) 2、移植准备工作 (1)用于移植FreeRTOS的基础工程。 时钟已配置好串口已配置好printf已经重定向到串口1 (2)FreeRT…

Android性能优化----执行时间优化

作者:lu人皆知 在APP做启动优化时,Application会做一些初始化的工作,但不要在Application中做耗时操作,然而有些初始化工作可能是很耗时的,那怎么办?初始化操作可以开启子线程来完成。 计算执行时间 常规…

MySQL的select ... where ...会加锁吗?

先说答案:不会。但select … where … lock in share mode会加锁。实验如下。 存储引擎innodb,MySQL版本5.7。 1:select … where … 如下图: 1:select … where … lock in share mode 如下图: 接着我…

【SpringCloud】SpringCloudAlibaba官网资料

出现原因 Spring Cloud Netflix Projects Entering Maintenance Mode 官网 博客 https://github.com/alibaba/spring-cloud-alibaba/blob/master/README-zh.md官网 https://spring.io/projects/spring-cloud-alibaba#overview英文 https://github.com/alibaba/spring-cloud-…

五种消息模型简单说明

五种消息模型简单说明 RabbitMQ提供了6种消息模型,但是第6种其实是RPC,并不是MQ,因此不予学习。那么也就剩下5种。但是其实3、4、5这三种都属于订阅模型,只不过进行路由的方式不同。  我们通过一个demo工程来了解下RabbitMQ的…

pytest自动化框架运行全局配置文件pytest.ini

还记得在之前的篇章中有讲到Pytest是目前主要流行的自动化框架之一,他有基础的脚本编码规则以及两种运行方式。 pytest的基础编码规则是可以进行修改,这就是今日文章重点。 看到这大家心中是否提出了两个问题:pytest的基础编码规则在哪可以…

【算法C++实现】5、二叉树

二叉树节点结构体 class Node { public:int val;Node* left;Node* right;Node(int a) : val(a), left(nullptr), right(nullptr) {}Node(int a, Node* l, Node* r): val(a), left(l), right(r) {}}1、递归遍历 递归遍历二叉树,每个节点的遍历顺序叫递归序&#xf…

软件工程模型-架构师之路(四)

软件工程模型 敏捷开发: 个体和交互 胜过 过程和工具、可以工作的软件 胜过 面面俱到的文件、客户合作胜过合同谈判、响应变化 胜过 循序计划。(适应需求变化,积极响应) 敏捷开发与其他结构化方法区别特点:面向人的…

神经网络基础-神经网络补充概念-40-神经网络权重的初始化

概念 神经网络权重的初始化是深度学习中的重要步骤,良好的权重初始化可以加速模型的训练收敛,提高模型的性能和稳定性。以下是一些常用的权重初始化方法: 零初始化(Zero Initialization):将权重初始化为零…

代码随想录第27天|39. 组合总和,40.组合总和II,131.分割回文串

39. 组合总和 分析这道题的搜索过程如下: 因为这道题没有限制要搜索几层,所以可以一直搜索直到sumtarget或者sum>target就return 回溯三部曲 1.递归函数参数 本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么…

Servlet+JDBC实战开发书店项目讲解第13讲:库存管理功能

ServletJDBC实战开发书店项目讲解第13讲:库存管理功能 在第13讲中,我们将讲解如何实现书店项目中的库存管理功能。该功能包括图书的添加、编辑、删除和查询等核心功能。下面是实现该功能的主要思路: 显示库存列表: 创建一个管理页…

P1328 [NOIP2014 提高组] 生活大爆炸版石头剪刀布

[NOIP2014 提高组] 生活大爆炸版石头剪刀布 题目描述 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。在《生活大爆炸》第二季第 8 集中出现了一种石头剪刀布的升级版游戏。 升级版游戏在传统的石头剪刀布游戏的基础…

Unity——各种特效的基本使用方法

特效是游戏制作不可或缺的一环,作为游戏开发者最重要的工作就是将特效添加到游戏中,并在合适的时机、合适的位置将特效播放出来,同时还要注意特效的管理和销毁。 某些种类的特效,如动效、贴花,还要编写脚本代码以实现…