Automatic Detection of Welding Defects Using Faster R-CNN

Automatic Detection of Welding Defects Using Faster R-CNN

 

基于快速R-CNN的焊接缺陷自动检测


简介:使用Inception-ResNet模型进行缺陷检测

数据集:射线图像


Abstract

Experts are required to properly detect the test results and it takes a lot of time and cost to manually Interpret the radio-graphic testing image of the structure over 500 blocks.

专家需要正确检测测试结果,手动解释超过500个区块的结构的无线电图形测试图像需要大量时间和成本。

a method of automatically detecting welding defect using Faster R-CNN which is a deep learning basis.using data augmentation method to artificially increase the limited data.

提出一种基于深度学习的快速R-CNN自动检测焊接缺陷的方法。采用数据扩充的方法,人为地增加有限的数据。

1. Introduction

For the weld testing, there are various technologies such as radiographic testing (RT), ultrasonic testing (UT) and magnetic testing (MT) used as non-destructive testing (NDT).

对于焊缝的检测,有射线检测(RT)、超声波检测(UT)和磁性检测(MT)等多种无损检测技术。

Since welding information of more than 2000 locations per block is manually prepared, omissions and errors commonly occur, which requires additional work, resulting in a huge amount of time and cost.

由于每个区块2000多个位置的焊接信息都是人工编制的,经常会出现遗漏和错误,这需要额外的工作,导致大量的时间和成本。

Of various deep learning algorithms, a convolutional neural network (CNN) that has recently been researched a lot for image classification shows high performance compared to conventional algorithms.

在各种深度学习算法中,卷积神经网络(CNN)在图像分类中表现出了比传统算法更高的性能。

not only the boundaries of defects but also the types of defects are important because NDT rules depending on the type of defect.that handles radiographic images, research on object detection employing CNN has already been underway.automatically detects the welding defects in radiographic images by employing Faster R-CNN that shows high-performance in terms of accuracy.

不仅缺陷的边界很重要,缺陷的类型也很重要,因为无损检测的规则取决于缺陷的类型。为了处理射线图像,利用CNN进行物体检测的研究已经在进行中。通过使用速度更快的R-CNN自动检测射线图像中的焊接缺陷,该R-CNN在准确性方面表现出高性能。

We compared ResNet [12] and Inception-ResNet V2 [13] that showed high-performance in ImageNet by configuring them as backbone networks.

我们通过将ResNet[12]和Inception-ResNet V2[13]配置为主干网络,比较了它们在ImageNet中表现出的高性能。

Table 1 describes the method and features of defect detection.

表1描述了缺陷检测的方法和特点。

2 Methodology

2.1. Convolutional Neural Network

2.2. Faster R-CNN

Faster R-CNN, as shown in Figure 2a, proposed a novel method by constructing a neural network in the conventional selective search as a method of obtaining region proposals.

Faster R-CNN,如图2a所示,提出了一种新的方法,通过在传统的选择性搜索中构建神经网络来获得区域建议。

2.3. ResNet

In forming a deep network, the gradient value becomes too large or saturated with small values, resulting in a vanishing gradient problem that loses or slows the learning effect.

在形成深度网络时,梯度值变得过大或被较小的值饱和,导致梯度消失问题,从而丢失或减慢学习效果。

ResNet added an identity shortcut connection to the conventional neural network structure to obtain the learning effect of the deep network.

ResNet 在传统的神经网络结构上增加了一个身份快捷连接,以获得深度网络的学习效果

2.4. Inception-ResNet V2

Inception-ResNet is a model that combines structural features and is divided into V1 and V2.Figure 3b shows the module A of Inception-ResNet [13].

INSTIMATION-ResNet是一种结合了结构特征的模型,分为V1和V2。图3b显示了初始-ResNet的模块A[13]。

The module form of Inception-ResNet V1 and Inception-ResNet V2 are the same, but there are differences in the number of internal filters and the modification of stem.

Inception-ResNet V1和 V2的模块形式相同,但在内部过滤器的数量和stem的修改上有所不同。

The Inception-ResNet model improves performance due to the difference between Inception V3 and V4. The high recognition rate and learning rate are verified through recent studies, and it is expected to achieve high outcomes when used as the feature extractor of the welding defect detection algorithm.

由于Inception V3和V4之间的差异,Inception-ResNet模型提高了性能。近期的研究验证了该算法具有较高的识别率和学习率,将其作为焊接缺陷检测算法的特征提取器有望取得较高的效果。

3 Welding Defect Data

In the dataset, the defect types are composed of porosity, lacks of fusion, slag, and cracks。The dataset is composed of radiographic testing images taken differently depending on the steel plate, pipe, and pipe size, thus it can be read and evaluated without dividing the weld after learning.

在数据集中,缺陷类型由孔隙、未熔合、熔渣和裂纹组成。数据集由根据钢板、管道和管道尺寸不同而拍摄的射线照相检测图像组成,因此在学习后无需分割焊缝即可读取和评估。

3.1. Pre-Processing

High-definition images degrade the learning rate, and it is difficult to expect good performance with an increase in the number of parameters to learn.

高清晰度图像降低了学习速度,并且随着要学习的参数数量的增加,很难期望良好的性能。

we removed the rest except for the weld and used it as the training data along with the information marked.

我们移除了除焊缝之外的其余部分,并将其与标记的信息一起用作训练数据。

In this study, we segmented the radiographic testing images to fit the weld into Sections 2–5 (Figure 5). The segmented image becomes smaller from 4900 pixels to less than 980 pixels, and the learning rate was reduced from 1.7 s to 0.3 s per epoch.

在这项研究中,我们将射线照相检测图像分成2-5部分(图5)。分割的图像从4900像素变得更小,小于980像素,并且学习速率从每历元1.7秒降低到0.3秒。

The total number of data increased to 341 from the 134 through image segmentation. Of them, there are 321 training data and 20 validation data.

通过图像分割,数据总量从134个增加到341个。其中,有321个训练数据和20个验证数据。

3.2. Small Object in Faster R-CNN

In MS COCO object detection competition [14], small , medium, and large are classified according to the pixel area, so the welds belong to both small and large object.

在MS COCO对象检测竞赛[14]中,根据像素面积对小型、中型和大型进行分类,因此焊缝同时属于小型和大型对象。

To theoretically estimate the size of the anchor box generated in RPN, we selected the size and aspect ratio by taking into account intersection over union (IoU) according to [15].

为了从理论上估计RPN中生成的锚框的大小,我们根据[15]通过考虑并集上的交集(IoU)来选择大小和纵横比。

4. Experiments and Results

The detection rate-recall graph of the algorithms for the porosity and LoS is shown in Figure 7.

孔隙率和LoS算法的检测率-召回图如图7所示。

Table 3 shows the result of evaluating the performance of the algorithm.

表3示出了评估算法性能的结果。

When comparing the feature extractor, ResNet showed relatively higher performance than Inception-ResNet V2.This shows that the classification of defect classes is lower than that of other models, but the performance of locations is better.

当比较特征提取器时,ResNet显示出比Inception-ResNet V2相对更高的性能。这表明缺陷类别的分类低于其他模型,但是位置的性能更好。

The porosity has similar training and evaluation data, and has a high overall detection rate.

孔隙度具有相似的训练和评估数据,并且具有高的总体检测率。

5. Conclusions

we set the size of the anchor box and aspect ratio to be suitable for small objects, and set the number of region proposal recommendations through an experiment.

我们设置锚框的大小和纵横比以适合小对象,并通过一个实验设置区域提议推荐的数量。

we compared ResNet and Inception-ResNet V2 with the feature extractor of Faster R-CNN, and proposed ResNet with the highest performance.

我们将ResNet和Inception-ResNet V2与更快的R-CNN的特征提取器进行了比较,并提出了性能最高的ResNet。

In this study, we used data conversion for efficient training and performance improvement.The experimental results show that data conversion could increase the performance by 0.074 in radiographic testing images.but covered specific welding defects to increase practicality.

在这项研究中,我们使用数据转换进行有效的培训和绩效改进。实验结果表明,数据转换可以将射线检测图像的性能提高0.074倍。但是覆盖了特定的焊接缺陷以增加实用性。

We increased the data of the LoS through data conversion and image segmentation, but could not significantly decrease the biased results.

我们通过数据转换和图像分割增加了LoS的数据,但不能显著减少有偏差的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/468954.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

让Android Studio支持系统签名(证书)

有时候,我们开发的apk需要用到系统权限,需要在AndroidManifest.xml中添加共享系统进程属性: android:sharedUserId"android.uid.system" android:sharedUserId"android.uid.shared" android:sharedUserId"android…

eslint 保存自动格式化_代码规范之理解ESLint、Prettier、EditorConfig

授权转载自:nowThenhttps://juejin.cn/post/6895889063111294990前言团队多人协同开发项目中困恼团队管理一个很大的问题是:无可避免地会出现每个开发者编码习惯不同、代码风格迥异,为了代码高可用、可维护性, 如何从项目管理上尽…

Deep learning based multi-scale channel compression feature surface defect detection system

基于深度学习的多尺度通道压缩特征表面缺陷检测系统 Deep learning based multi-scale channel compression feature surface defect detection system 简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像…

前端MVC框架之 Angular

一、什么是Angular jQuery,它属于一种类库(一系列函数的集合),以DOM为驱动核心;而Angular是一种 MVC 的前端框架,则是前端框架,以数据和逻辑为驱动核心,它有着诸多特性,最重要的是:模…

C语言关键字(三)

之前的两篇文章 嵌入式Linux:c语言深度解剖(数据类型关键字)​zhuanlan.zhihu.com 嵌入式Linux:c语言深度解剖(入门篇)​zhuanlan.zhihu.com 这篇文件继续讲解C语言关键字 想问大家一个问题&#xff0c…

python bottle框架 运维_python bottle 框架实战教程:任务管理系统 V_1.0版 | linux系统运维...

经过1-2个星期的开发,现在用任务管理功能(添加、删除、修改,详细)、项目管理功能(添加、删除,修改,详细)等,我把现在完成的版本,叫做1.0吧。发布完这个版本后…

form 窗体增加边框_C#控件美化之路(13):美化Form窗口(上)

在开发中最重要的就是美化form窗口,在开发中,大多都是用会用自主美化的窗口开发程序。本文只是点多,分为上中下节。分段讲解。本文主要讲解窗口美化关键步骤。首先美化窗体,就需要自己绘制最大化 最小化 关闭按钮。其次就是界面样…

第四周数据结构

转载于:https://www.cnblogs.com/bgd150809329/p/6650255.html

gdb x命令_gdb基本命令

参考自:gdb基本命令(非常详细)_JIWilliams-CSDN博客_gdb命令​blog.csdn.net本文介绍使用gdb调试程序的常用命令。 GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具。如果你是在 UNIX平台下做软件,你会发现GDB这个调试工具有比VC、BCB的图形化调试…

YOLOX-PAI: An Improved YOLOX, Stronger and Faster than YOLOv6

YOLOX-PAI:一种改进的YOLOX,比YOLOv6更强更快 原文:https://arxiv.org/pdf/2208.13040.pdf 代码:https://github.com/alibaba/EasyCV 0.Abstract We develop an all-in-one computer vision toolbox named EasyCV to facilita…

安装一直初始化_3D max 软件安装问题大全

纵使3D虐我千百遍,我待3D如初恋!大家好,我是小文。快节奏生活的今天,好不容易有点学习的热情,打开电脑学习下,没想到被简单的软件安装问题浇灭!这不是耽误了一位伟大的世界设计师诞生的节奏吗&a…

TCP/IP 协议栈 -- 编写UDP客户端注意细节

上节我们说到了TCP 客户端编写的主要细节&#xff0c; 本节我们来看一下UDP client的几种情况&#xff0c;测试代码如下&#xff1a; server&#xff1a; #include <stdio.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h>…

RuntimeError: Address already in use

问题描述&#xff1a;Pytorch用多张GPU训练时&#xff0c;会报地址已被占用的错误。其实是端口号冲突了。 因此解决方法要么kill原来的进程&#xff0c;要么修改端口号。 在代码里重新配置 torch.distributed.init_process_group()dist_init_method tcp://{master_ip}:{mast…

Windows环境下的安装gcc

Windows具有良好的界面和丰富的工具&#xff0c;所以目前linux开发的流程是&#xff0c;windows下完成编码工作&#xff0c;linux上实现编译工作。 为了提高工作效率&#xff0c;有必要在windows环境下搭建一套gcc,gdb,make环境。 MinGW就是windows下gcc的版本。 下载地址ht…

RuntimeError: NCCL error in:XXX,unhandled system error, NCCL version 2.7.8

项目场景&#xff1a; 分布式训练中遇到这个问题&#xff0c; 问题描述 大概是没有启动并行运算&#xff1f;&#xff1f;&#xff1f;&#xff08; 解决方案&#xff1a; &#xff08;1&#xff09;首先看一下服务器GPU相关信息 进入pytorch终端&#xff08;Terminal&#x…

一张倾斜图片进行矫正 c++_专业性文章:10分钟矫正骨盆前倾

如今&#xff0c;骨盆前倾(又称“下交叉综合征”)非常多&#xff0c;大部分是由于以下两个原因而变得越来越突出&#xff1a;经常久坐不良的运动习惯后面我们讲到纠正骨盆前倾的四个基本步骤&#xff0c;让你快速解决&#xff0c;提高生活质量知识型和系统型的内容&#xff0c;…

TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory

项目场景&#xff1a; 运行程序&#xff0c;出现报错信息 TypeError: cant convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.。 Traceback (most recent call last):File "tools/demo.py", line 97, in <module>vi…

Secure CRT 自动记录日志

配置自动log操作如下&#xff1a; 1.options ---> Global Options 2、General->Default Session->Edit Default Settings 3、Terminal->Log File 设置如图上所示 点击 日志 &#xff0c;在选项框中 Log file name中填入路径和命名参数&#xff1a; E:\Log\%Y_%M_…

java 异步调用方法_乐字节Java编程之方法、调用、重载、递归

一、概述方法是指人们在实践过程中为达到一定目的和效果所采取的办法、手段和解决方案。所谓方法&#xff0c;就是解决一类问题的代码的有序组合&#xff0c;是一个功能模块。编程语言中的方法是组合在一起来执行操作语句的集合。例如&#xff0c;System.out.println 方法&…

git clone 从GitHub上下载项目到服务器上运行+创建虚拟环境

1. 基础的Linux命令 可先进入需要放置文件的路径之下 pwd # 可看当前路径 cd …/ #返回上一层目录 cd ./xx/ #进入当前路径下的下一个文件2. GitHub项目clone到服务器上运行 # 复制GitHub页面的链接&#xff0c;在服务器后台输入git clone 命令即可 git clone https://githu…