CPU中的程序是怎么运行起来的

总述

最近一位朋友问我,开发的代码是怎么在芯片运行起来的,我就开始给他介绍代码的预编译、汇编、编译、链接然后到一般的文件属性,再到代码运行。但是大佬问了我一句,CPU到底是怎么执行到每一个逻辑的,就讲了哈CPU的架构。这是时候真的有些迷了,虽然有模电数电的底子,但是自己都说迷糊了,汇编怎么对应到机器码再到怎么执行每一个逻辑。

所以我想了想,我自己也重新学习整理一下,写一篇文章分享给自己也分享给大家。虽然网上也有很多人讲这个过程,我也想用自己的视角去介绍一下。所以我就花了三天时间把《CODE》这本书啃完,然后又看了哈Crash Course Computer Science的视频,现在终于可以写篇文章了。

1

CPU的硬件最小原子

计算机从上世纪四十年代发展到现在有八十多年了,我们现在开发应用以及很少会涉及到底层的部分,硬件设计的电子专业在学校里面会学习模电数电这两门课,今天的第一部分就从这里说起。

一般我们不考虑物理的硬件底层的实现逻辑,但是为了后续的机器码的介绍,这里开始介绍CPU的基本组成部分。

    

我们都知道现在的CPU是无数的晶体管组成,一块很小的CPU用显微镜观察可以看到上百万个元器件,那么最早电脑是啥样的呢?感谢Crash Course Computer Science的视频,下面有很好照片都是从她的视频中截取。以及感谢《CODE》,好多资料也是从此书得来。

最早的计算机,它有76万5千个组件,300多万个连接点和大约804公里长的用线,这个是真的大,而且它的核心控制还是用继电器实现控制逻辑的。

此外,它的性能相较于于现在的电脑来说简直微不足道。

好了言归正传,我们直接介绍现在计算机中的CPU组成,之前用继电器、电子管进行控制计算,这些基本的元器件使得计算机体型庞大,后来半导体的出现,使得计算机的体积大大减小。没有使用半导体的时候,科学家使用继电器等进行控制电路的开关,控制电路电流的高和低,通过布尔代数组合形成我们现在经常说的逻辑门,继而实现数据的控制。

    


如上图所以它会出现如下情况

这其实就是一个简单开关的与门(AND)电路,所有的变量输入是1的时候,输出才为1。相应的还有非门、或门、异或门等。

那么半导体是如何做到的呢?下面所示是三极管变化而成的与门(AND)电路,通过两个三极管连接(三极管的工作原理可以百度一哈),实现逻辑。

这是非门(NOT),输入1输出位0,输入位、为0输出为1.

这是或门(OR),只有A、B两个同时输入0的时候,输出才为0,其余都为1.

这是常用的逻辑门的图形表示以及真值表显示,最后一栏为真值表显示,其中A、B为输入,F为输出。

基于这些逻辑的组合我们可以变成最小的11位二进制逻辑的加法器,1bit的数据锁存器,再扩展为8位加法器,256M存储器。

2

CPU的模块组成过程

讲完了CPU组成的最小原子结构,接下来我们抽象出来了逻辑门进行

首先我们先介绍一下CPU的基本架构

一块完整可以执行程序CPU功能部件,里面有基本的ALU算数逻辑单元、控制单元、外部储存器(储存数据和程序)。

1970年发布的时候,它是第一个封装在单个芯片内完整的ALU。

ALU(算数逻辑单元)有两个单元:一个算数单元(加法器),负责计算机里的所有数字操作,例如加减法、增量运算等;一个逻辑单元,负责一些简单的数值测试,例如检测ALU输出是否为零的的电路


加法器:

用单个晶体管一个个去拼,把这个电路做出来,到那时会很复杂很难理解。所以我们更高层面的抽象-逻辑门去实现(AND、OR、NOT、XOR)。

下面这是一个1位的加法器:

二进制数的“和”可以由异或门得到,而“进位”可以由与门得到,所以可以把异或门和与门结合起来来完成两个二进制数 A和B的加法 

AB只能输入0或者1,也就是这个加法器能算0+0,1+0或者1+1。

脱离具体的形状,我们可以把以上的一个加法器,抽象为一个符号用来显示:

然后我们在进行扩展,把八个全加器连接,这样就变成了一个8bit的加法器。每个全加器的进位输出都是下一个全加器的进位输入: 

用一个抽象的框图进行表示,其中输入是A和B标识为从A0~A7及B0~B7。输出为和输出,标识为从 S0~S7: 

这样我们就构造了一个简单8位的加法器。


逻辑单元:同样AND、OR、NOT、XOR的执行,如下图一个简单的判断输出是否为0的电路

它用一堆OR门检查其中一位是否为1,哪怕只有一个输入的bit(位)为1,但都会被被或门到最后一个NOT(非)门进行取反,所以只有输入的数字是0,输出才能是为1。

告诉ALU执行加减法,下面图片里面的的V代表ALU部分。

通过ALU的FLAGS进行判断,下面有三个标志一个是OVERFLOW(操作超出了总线宽度,设置为true(1))、ZERO(运算结果是否为零)、NEGATIVE(运算结果第一位为1,则设置为true(1),表示为负数)

这就是ALU中的一些单元,其实也是一大堆逻辑门巧妙连到一起。

此外我们还需要存储器(memory),如果ALU计算出来数据丢掉那么数据也没什么用了,所以需要内存把数据保存起来,与ALU一起组成CPU

之前的介绍都是单向顺序执行的电路,那有什么可以返回的电路呢,通过输出来控制影响输入。

进行AND 、NOT、OR组合,变成一个1位锁存器

输入STE为1,输出为1

输入RESTE为1,输出为0

如果设置和置位都为0,电路会输出最后放置的状态,所以它就保存住1bit位的数据


其中这样一个1位的锁存器,放入的动作叫做写,拿出数据的动作叫做读

为了好显示,我们使用再高一级别的抽象层,用下面的框图表示:

随着芯片锁存器大小的扩展,正常连接需要的线是非常之多,所以引入了矩阵方式:

为了将地址转化成为行和列 还要用多路复用器,这就是一个基本的SDRAM的组成结构。

SRAM DRAM FLASH NVRAM,大家功能上相似,但是用不同的电路储存单个bit的数据,比如使用不同的逻辑门、电容器、、电荷捕获或者忆阻器。但是根本上,这些技术都是矩阵层层嵌套,来储存大量的信息。

3

CPU的代码语言执行以及编程语言的变化过程

通过不同的逻辑门,我们逐渐搭建起了CPU的硬件部分,同时也抽象到了高层次的“微体系架构”,我们开始告诉CPU的模块进行操作,CPU里面都是101二进制数据,那怎么和CPU执行指令挂上钩呢?

最早执行机器使用就是穿孔卡片,通过穿孔卡片的特殊位置有没有穿孔,决定机器执行的不同步骤。

在计算机早期,程序员编程必须用机器码写程序,一般会在会在纸上写一个“高层次”的描述——伪代码,例如:从内存中获取当月销售额,再计算出税费。

这里展示一个简单范例代码,一段机器码 00101110。

首先这个机器码分为前四位和后四位,前四位代表操作码,后四位代表地址。

首先在指令表可以查到 0010 对应着执行指令是LOAD_A 意思为从内存地址取出数据,放到寄存器A中。

CPU看到00101110是怎么执行的呢?

首先CPU有两个执行时候的寄存器:

  1. 指令地址寄存器,一个追踪器,负责追踪程序运行到哪里了;

  2. 指令寄存器,负责储存当前指令

其次,CPU执行指令有三个阶段: 取指令->解码->执行

取指令:负责把指令从RAM中复制到指令寄存器中

如下所示:CPU把0010 1110放到指令寄存器中

解码阶段:负责解析复制过来的指令对应到操作码是哪个执行,先解析0010


LOAD_A指令的工作:把RAM里面的值放入寄存器A中

再解析后四位1110,为地址14

接下来通过控制单元进行选择确认是否执行load指令

当然控制单元也是由逻辑门连接起来的,这个时候需要一个电路,检查操作码是不是LOAD_A对应的0010

执行阶段:当确认了执行的操作码,我们就开始执行

从地址1110(10进制14)读取出0000 0011的数据,  因为是LOAD_A指令,我们把该数据放进寄存器A,不操作其他寄存器

本次执行完成,然后我们就把“指令地址寄存器”+1,执行下一条命令,一直重复到代码结束。

如果我们遇到了例如加减运算时候,就可以用到ALU了,数据寄存器把需要进行add的两个数据输入,然后在发送操作码给ALU,ALU开始执行最后输出到暂存的寄存器,关闭ALU,最后再把数据放入正确的寄存器

除了执行动作,现代CPU还有时钟控制。很早的计算机都是用人工插拔来进行每一条指令的计算,但是对于现在的CPU执行频率来说,人工是做不到这样的速度,所以现在CPU里面有专门的时钟进行管理CPU的节奏,来告诉CPU要取指令-解码-执行。类似于练习乐器时候使用的节拍器一样。

前面介绍程序运行时候我们是假设程序已经在内存里面了,但实际上程序储存的位置不在内存,并且需要在执行时候加载到内存里面。只要内存足够,不仅可以储存要运行的程序,还可以存程序需要的数据,以及运行程序时候产生的新数据。

不过早期编程都是专家活,不管是全职还是技术控,都需要非常了解底层硬件,要懂操作码、寄存器等才能写程序,所以编程很麻烦,哪怕是工程师和科学家都无法完全发挥计算机的能力

所以程序员开发出了一种新语言,更高层次,更可读性,每个操作码分配一个简单的名字——助记符。助记符后面紧跟数据,形成完整的指令。这样程序员就不用0和1去写代码,可以用load jump等助记符开始编程,这就是汇编。前面我们讲过这些助记符,应该还是比较容易理解的。但是CPU是只能识别二进制的,所以程序员又写了二进制程序来帮忙,它可以读懂文字指令,自动转化成二进制指令,这个程序就叫做——汇编器。

汇编器读取用汇编语言写的程序,然后转成机器码。LOAD_A 14 是一个典型的汇编代码。

发展到现在,就英特尔的CPU 酷睿i7有上千种指令和指令变种,长度从一个字节到15个字节。

    

FORTRAN,是IBM1957年发布的语言,而主持FORTRAN的项目的总监John Backus说,他只是因为懒,所以就开发了新的语言,是的大部分新程序的开发是因为更高效率的开发,把一个月的开发时间编程一周,在变成一天。

就FORTRAN使用效果来说,确实也达到了,平均FORTRAN写的程序要比同等的汇编写的代码少二十倍。然后FORTRAN编译器会把FORTRAN代码转为机器码。


然后陆续新的语言不断产生,60年代有ALGOL、LISP和BASIC等语言;70年代有Pascal、C和Smalltalk;80年代有C++、Objectivs-C和Perl;90年代有Python、Ruby和Java;2000开始出现Swift、C#、Go。未来语言还会越来越多,新的语言用新的平台和新的技术,让我们可以快速的开发使用。


推荐阅读:

    专辑|Linux文章汇总

    专辑|程序人生

    专辑|C语言

嵌入式Linux

微信扫描二维码,关注我的公众号 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/467296.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MspEmu W.I.P.

转载于:https://www.cnblogs.com/sesexxoo/archive/2006/07/29/6190717.html

Git-远程操作

远程分支:远程跟踪分支remote branch是对远程分支状态的引用,是不能移动的,它会根据远程分支变化以及网络通信自动移动。Git服务器包含了远程分支master,在My Computer中的remote branch就是远程跟踪分支,是对git服务器…

计算机语言学 自然语言处理程序,利用知网进行(计算机)自然语言处理

摘要:自然语言理解,特别是中文信息处理,一直是计算机界的难题.让计算机来理解和处理丰富的自然语言,极具挑战性.自然语言的计算机处理是一个多学科交叉研究领域.来自计算机科学,语言学,数学等不同学科的研究人员构成了目前这一领域的主要研究力量.自然语言处理就是研…

对于鸿蒙的一点见解

周五我在东莞出差,下班后看了开发者大会的视频回放,回到酒店,我跟邓总说,我们今天不要拍视频,也不要打王者了,你给我下鸿蒙的代码来看看,然后,那天晚上我们都没有上线王者&#xff0…

今天雨很大

早上就开始下雨了,一直到现在. 来公司发现翻译来了,一个星期前面试过的那个. 不知道做什么了,看来只能开始英文的B2B了.一直忙来忙去,突然早一天完成了工作,余下的一天不知道做什么. 昨天晚上在家里的机子练习时,多学会了一些东西,看来有必要多看一些别人的例子,…

Linux内存管理slub分配器

背景Kernel版本:4.14ARM64处理器,Contex-A53,双核使用工具:Source Insight 3.5, Visio1. 概述之前的文章分析的都是基于页面的内存分配,而小块内存的分配和管理是通过块分配器来实现的。目前内核中&#xf…

大学计算机科学不会编码,华中科技大学人员编号编码管理办法

第一条 为进一步推进学校管理的信息化、规范化和系统化,加强对我校教职工、学生等各类人员基本信息的统一管理,结合学校实际情况,制定本管理办法。第二条 凡在我校工作、学习的教职工、学生、短期聘用人员及其他人员,均拥有由10…

逆向知识第十讲,循环在汇编中的表现形式,以及代码还原

逆向知识第十讲,循环在汇编中的表现形式,以及代码还原 一丶do While在汇编中的表现形式 1.1高级代码: #include "stdafx.h"int main(int argc, char* argv[]) {int nSum 0;int i 0;do {nSum nSum i;} while (i <100);return 0; } 高级代码很简单,只是一个简单…

数据库基础系列之一:MySQL账户

1.mysql用户创建&#xff1a; shell> mysql --userroot mysql mysql> GRANT ALL PRIVILEGES ON *.* TO montylocalhost IDENTIFIED BY something WITH GRANT OPTION; mysql> GRANT ALL PRIVILEGES ON *.* TO monty"%" IDENTIFIED BY something WITH GRANT…

计量经济学实验报告计算机,计量经济学-实验报告.doc

.PAGE.资料.经济与政法学院计量经济学实验报告班级&#xff1a; 国贸1312姓名&#xff1a; 纪方方学号&#xff1a; 2013104208实验课程计量经济学实验名称OLS的估计和检验(受约束回归模型)实验目的和内容1&#xff0e;利用SPSS计算OLS估计量2&#xff0e;对模型估计结果进行检…

做技术知道了哪些事情代表自己成熟了?

如果技术圈是一个江湖&#xff0c;每个人初入江湖的时候都懵懵懂懂的&#xff0c;从懵懂到老练&#xff0c;从老练到老油条&#xff0c;这个是一个过程&#xff0c;过程中总是有一些比较有用的观点&#xff0c;这些观点&#xff0c;就表示你从小白上升到老白的过渡。这些观点&a…

数据结构复习笔记(2)

1&#xff0c; 若入栈的元素为n,则可得到的输出序列数量为 (2n)!/(n1)(n!)(n!)。2&#xff0c; 用两个长度相同的栈S1,S2构造一个队列。在S1中进行入队操作&#xff0c;S2中进行出队操作 &#xff0c;判断队列空的条件是&#xff0c;S1和S2同时为空&#xff0c;判断队列满的条…

html兼容webki,评IE10对HTML5的完美支持

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼近期Windows 8的消息充斥着整个网络。微软将IE10集成在系统中&#xff0c;并且宣称IE10会很好的支持HTML5。本文是对IE10支持HTML5的研究报告。预览&#xff1a;HTML5初探 在过去的几年里我们做了一系列测试来评估主要的移动平台对…

用于MCU,基于FreeRTOS的micro(轻量级)ROS

编辑整理&#xff1a;strongerHuang作者&#xff1a;Francesca Finocchiaro关注我的读者中应该有部分是做ROS相关的工作&#xff0c;今天就来分享一个基于FreeRTOS的micro&#xff08;微型&#xff09;ROS。一、关于ROSROS&#xff1a;Robot Operating System,&#xff0c;即机…

惜缘-致家乡的一位女孩[原创]

命里有时终须有,命里无时莫强求.这说的应该就是缘分吧.曾经有人说,每个人来到世界上,都只有一半.然后,每个人会花一生的时间寻找另一半.无论你有意识还是无意识地去寻找你的恋人,你是不是都希望这个假设是成立的呢?至少,你知道有那样一个人在世界的那一个地方等你回来,在你找他…

【干货】同步与互斥的失败例子

韦东山老师最新录制的驱动大全之<<同步与互斥>>收费视频已经在淘宝上架销售 &#xff0c;一共7节&#xff0c;良心价29元&#xff0c;同时已经同步到CSDN , 51CTO , 电子发烧友&#xff0c;腾讯课堂等平台。本文是其中一节《同步与互斥的失败例子》视频配套文档&am…

微型计算机计算机钢琴,微型计算机原理及接口技术钢琴课程设计.doc

高频电子线路课程设计题目&#xff1a; 高 频 功 率 放 大 器 .班级&#xff1a; 08级通信1班 .姓名&#xff1a; 马宗祥 .学号&#xff1a; P081513166 .成绩&#xff1a; .组内分工成员及分工&#xff1a;程冲冲&#xff1a;低频放大马云、吴欣萌&#xff1a;振荡及调制洪学军…

TCP三次握手

以下是我做的实验 &#xff0c;180.97.33.108 是百度 以下是我自己画的图 转载于:https://www.cnblogs.com/heben/p/7879439.html

微软TechEd 2006亲历(六):微软新一代系统管理平台面纱待揭

<?xml:namespace prefix o ns "urn:schemas-microsoft-com:office:office" />对于企业网络管理人员&#xff0c;也许没有想到微软将陆续提供it系统&#xff08;包括存储&#xff09;的管理工具。利用这些管理工具&#xff0c;企业将可以轻松、便捷地管理企业…

Linux中断子系统-通用框架处理

背景Kernel版本&#xff1a;4.14ARM64处理器&#xff0c;Contex-A53&#xff0c;双核使用工具&#xff1a;Source Insight 3.5&#xff0c; Visio1. 概述《Linux中断子系统&#xff08;一&#xff09;-中断控制器及驱动分析》讲到了底层硬件GIC驱动&#xff0c;以及Arch-Specif…