Python typing函式庫和torch.types

Python typing函式庫和torch.types

  • 前言
  • typing
    • Sequence vs Iterable
    • Callable
    • Union
    • Optional
    • Functions
      • Callable
      • Iterator/generator
      • 位置參數 & 關鍵字參數
    • Classes
      • self
      • 自定義類別
      • ClassVar
      • \_\_setattr\_\_ 與 \__getattr\_\_
  • torch.types
    • builtins
  • 參數前的*

前言

在PyTorch的torch/_C/_VariableFunctions.pyi中有如下代碼:

@overload
def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(*size: _int, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(*size: _int, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(*size: _int, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
@overload
def rand(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Union[_device, str, None]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...

當中的Sequence, Iterable, Optional, Union以及_int, _bool都是什麼意思呢?可以從torch/_C/_VariableFunctions.pyi.in中一窺端倪:

from torch import Tensor, Generator, strided, memory_format, contiguous_format, strided, inf
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator, NamedTuple, Sequence, Literal, TypeVarfrom torch.types import _int, _float, _bool, Number, _dtype, _device, _qscheme, _size, _layout, SymInt, Device

所以Sequence, Iterable, Optional, Union等是從一個叫做typing的庫中導入的。typing是Python的標準庫之一,作用是提供對類型提示的運行時支持。

_int, _bool等則是PyTorch中自行定義的類型。

typing

Sequence vs Iterable

根據Type hints cheat sheet - Standard “duck types”,Sequence代表的是支持__len____getitem__方法的序列類型,例如list, tuple和str。dict和set則不屬於此類型。

# Use Iterable for generic iterables (anything usable in "for"),
# and Sequence where a sequence (supporting "len" and "__getitem__") is
# required

根據Python Iterable vs Sequence:

Iterable代表的是支持__iter____getitem__的類型,如rangereversed

r = range(4)
r.__getitem__(0) # 0
r.__iter__() # <range_iterator object at 0x0000015AE7945D30>
l = [1, 2, 3]
rv = reversed(l)
rv.__iter__() # <list_reverseiterator object at 0x0000015AE7980E20>
rv.__getitem__() # 不支援__getitem__方法,但因為支持__iter__所以依然可以歸類為Iterable
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# AttributeError: 'list_reverseiterator' object has no attribute '__getitem__'

因為Sequence也具有__iter____getitem__,所以根據定義,所有的Sequence都是Iterable

l = []
l.__iter__ # <method-wrapper '__iter__' of list object at 0x7f15bb50b5c0>
l.__getitem__ # <built-in method __getitem__ of list object at 0x7f15bb50b5c0>

Callable

typing - Callable

Callable
Frameworks expecting callback functions of specific signatures might be type hinted using Callable[[Arg1Type, Arg2Type], ReturnType].

文檔寫得很淺顯易懂,不過有一點要注意的是入參型別要用[]括起來。

Type hints cheat sheet - Functions中給出了例子:

# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f

如果先不看類型提示的代碼,這句其實就是x = f,把x這個變數設定為f這個函數。當中的Callable[[int, float], float]說明了f是一個接受int, float,輸出float的函數。

Union

typing - Union

typing.Union
Union type; Union[X, Y] is equivalent to X | Y and means either X or Y.To define a union, use e.g. Union[int, str] or the shorthand int | str. Using that shorthand is recommended.

Union[X, Y]表示型別可以是XY,從Python 3.10以後,可以使用X | Y這種更簡潔的寫法。

Type hints cheat sheet - Useful built-in types中給出的例子:

# On Python 3.10+, use the | operator when something could be one of a few types
x: list[int | str] = [3, 5, "test", "fun"]  # Python 3.10+
# On earlier versions, use Union
x: list[Union[int, str]] = [3, 5, "test", "fun"]

Optional

typing - Optional

Optional type.Optional[X] is equivalent to X | None (or Union[X, None]).

Optional[X]表示該變數可以是X型別或是None型別。

Type hints cheat sheet - Useful built-in types中給出了一個很好的例子:

# Use Optional[X] for a value that could be None
# Optional[X] is the same as X | None or Union[X, None]
x: Optional[str] = "something" if some_condition() else None

這裡x根據some_condition()的回傳值有可能是一個字串或是None,所以此處選用Optional[str]的類型提示。

Functions

mypy - Functions

指定參數和回傳值型別:

from typing import Callable, Iterator, Union, Optional# This is how you annotate a function definition
def stringify(num: int) -> str:return str(num)

多個參數:

# And here's how you specify multiple arguments
def plus(num1: int, num2: int) -> int:return num1 + num2

無回傳值的函數以None為回傳型別,並且參數的預設值應寫在參數型別後面:

# If a function does not return a value, use None as the return type
# Default value for an argument goes after the type annotation
def show(value: str, excitement: int = 10) -> None:print(value + "!" * excitement)

可以接受任意型別參數的函數則不必指定參數型別:

# Note that arguments without a type are dynamically typed (treated as Any)
# and that functions without any annotations not checked
def untyped(x):x.anything() + 1 + "string"  # no errors

Callable

Callable當作參數的函數:

# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f
def register(callback: Callable[[str], int]) -> None: ...

Iterator/generator

generator函數相當於一個Iterator

# A generator function that yields ints is secretly just a function that
# returns an iterator of ints, so that's how we annotate it
def gen(n: int) -> Iterator[int]:i = 0while i < n:yield ii += 1

將function annotation分成多行:

# You can of course split a function annotation over multiple lines
def send_email(address: Union[str, list[str]],sender: str,cc: Optional[list[str]],bcc: Optional[list[str]],subject: str = '',body: Optional[list[str]] = None) -> bool:...

位置參數 & 關鍵字參數

# Mypy understands positional-only and keyword-only arguments
# Positional-only arguments can also be marked by using a name starting with
# two underscores
def quux(x: int, /, *, y: int) -> None:passquux(3, y=5)  # Ok
quux(3, 5)  # error: Too many positional arguments for "quux"
quux(x=3, y=5)  # error: Unexpected keyword argument "x" for "quux"

注意到此處參數列表中有/*兩個符號,參考What Are Python Asterisk and Slash Special Parameters For?:

Left sideDividerRight side
Positional-only arguments/Positional or keyword arguments
Positional or keyword arguments*Keyword-only arguments

Python的參數分為三種:位置參數,關鍵字參數及可變參數(可以透過位置或關鍵字的方式傳遞)。

/符號的左邊必須是位置參數,*符號的右邊則必須是關鍵字參數。

所以上例中x必須以位置參數的方式傳遞,y必須以關鍵字參數的方式傳遞。

一次指定多個參數的型別:

# This says each positional arg and each keyword arg is a "str"
def call(self, *args: str, **kwargs: str) -> str:reveal_type(args)  # Revealed type is "tuple[str, ...]"reveal_type(kwargs)  # Revealed type is "dict[str, str]"request = make_request(*args, **kwargs)return self.do_api_query(request)

Classes

mypy - Classes

self

class BankAccount:# The "__init__" method doesn't return anything, so it gets return# type "None" just like any other method that doesn't return anythingdef __init__(self, account_name: str, initial_balance: int = 0) -> None:# mypy will infer the correct types for these instance variables# based on the types of the parameters.self.account_name = account_nameself.balance = initial_balance# For instance methods, omit type for "self"def deposit(self, amount: int) -> None:self.balance += amountdef withdraw(self, amount: int) -> None:self.balance -= amount

成員函數self參數的型別不需指定。

自定義類別

可以將變數型別指定為自定義的類別:

# User-defined classes are valid as types in annotations
account: BankAccount = BankAccount("Alice", 400)
def transfer(src: BankAccount, dst: BankAccount, amount: int) -> None:src.withdraw(amount)dst.deposit(amount)
# Functions that accept BankAccount also accept any subclass of BankAccount!
class AuditedBankAccount(BankAccount):# You can optionally declare instance variables in the class bodyaudit_log: list[str]def __init__(self, account_name: str, initial_balance: int = 0) -> None:super().__init__(account_name, initial_balance)self.audit_log: list[str] = []def deposit(self, amount: int) -> None:self.audit_log.append(f"Deposited {amount}")self.balance += amountdef withdraw(self, amount: int) -> None:self.audit_log.append(f"Withdrew {amount}")self.balance -= amountaudited = AuditedBankAccount("Bob", 300)
transfer(audited, account, 100)  # type checks!

transfer函數的第一個參數型別應為BankAccount,而AuditedBankAccountBankAccount的子類別,所以在做類型檢查時不會出錯。

ClassVar

Python中類別的變數有類別變數別實例變數兩種。如果想要將成員變數標記為類別變數,可以用ClassVar[type]

# You can use the ClassVar annotation to declare a class variable
class Car:seats: ClassVar[int] = 4passengers: ClassVar[list[str]]

__setattr__ 與 __getattr__

# If you want dynamic attributes on your class, have it
# override "__setattr__" or "__getattr__"
class A:# This will allow assignment to any A.x, if x is the same type as "value"# (use "value: Any" to allow arbitrary types)def __setattr__(self, name: str, value: int) -> None: ...# This will allow access to any A.x, if x is compatible with the return typedef __getattr__(self, name: str) -> int: ...a.foo = 42  # Works
a.bar = 'Ex-parrot'  # Fails type checking

__setattr__函數可以為類別新增實體變數。

torch.types

PyTorch中自定義的類型。

torch/types.py

import torch
from typing import Any, List, Sequence, Tuple, Unionimport builtins# Convenience aliases for common composite types that we need
# to talk about in PyTorch_TensorOrTensors = Union[torch.Tensor, Sequence[torch.Tensor]]# In some cases, these basic types are shadowed by corresponding
# top-level values.  The underscore variants let us refer to these
# types.  See https://github.com/python/mypy/issues/4146 for why these
# workarounds is necessary
_int = builtins.int
_float = builtins.float
_bool = builtins.bool_dtype = torch.dtype
_device = torch.device
_qscheme = torch.qscheme
_size = Union[torch.Size, List[_int], Tuple[_int, ...]]
_layout = torch.layout
_dispatchkey = Union[str, torch._C.DispatchKey]class SymInt:pass# Meta-type for "numeric" things; matches our docs
Number = Union[builtins.int, builtins.float, builtins.bool]# Meta-type for "device-like" things.  Not to be confused with 'device' (a
# literal device object).  This nomenclature is consistent with PythonArgParser.
# None means use the default device (typically CPU)
Device = Union[_device, str, _int, None]# Storage protocol implemented by ${Type}StorageBase classesclass Storage(object):_cdata: intdevice: torch.devicedtype: torch.dtype_torch_load_uninitialized: booldef __deepcopy__(self, memo) -> 'Storage':...def _new_shared(self, int) -> 'Storage':...def _write_file(self, f: Any, is_real_file: _bool, save_size: _bool, element_size: int) -> None:...def element_size(self) -> int:...def is_shared(self) -> bool:...def share_memory_(self) -> 'Storage':...def nbytes(self) -> int:...def cpu(self) -> 'Storage':...def data_ptr(self) -> int:...def from_file(self, filename: str, shared: bool = False, nbytes: int = 0) -> 'Storage':...def _new_with_file(self, f: Any, element_size: int) -> 'Storage':......

torch.types中的_int, _float, _bool就是Python內建的builtins.int, builtins.float, builtins.bool

PyTorch中定義的Number則是_int, _float, _bool中的其中一個。

builtins

builtins — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for example, builtins.open is the full name for the built-in function open().

可以透過builtins這個模組存取Python內建的identifier,例如Python中的open()函數可以使用builtins.open來存取。

參數前的*

參考What does the Star operator mean in Python?

Single asterisk as used in function declaration allows variable number of arguments passed from calling environment. Inside the function it behaves as a tuple.

在函數參數前加上*表示可以接受任意個參數,在函數內部,該參數會被當成一個tuple。

def function(*arg):print (type(arg))for i in arg:print (i)
function(1,2,3)
# <class 'tuple'>
# 1
# 2
# 3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45929.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[RDMA] 高性能异步的消息传递和RPC :Accelio

1. Introduce Accelio是一个高性能异步的可靠消息传递和RPC库&#xff0c;能优化硬件加速。 RDMA和TCP / IP传输被实现&#xff0c;并且其他的传输也能被实现&#xff0c;如共享存储器可以利用这个高效和方便的API的优点。Accelio 是 Mellanox 公司的RDMA中间件&#xff0c;用…

Visual Studio 2022 你必须知道的实用调试技巧

目录 1、什么是bug&#xff1f; 2.调试是什么&#xff1f;有多重要&#xff1f; 2.1我们是如何写代码的&#xff1f; 2.2又是如何排查出现的问题的呢&#xff1f; ​编辑 2.3 调试是什么&#xff1f; 2.4调试的基本步骤 2.5Debug和Release的介绍 3.Windows环境调试介绍…

基于Java+SpringBoot的房源出租信息管理系统【源码+论文+演示视频+包运行成功】

博主介绍&#xff1a;✌csdn特邀作者、博客专家、java领域优质创作者、博客之星&#xff0c;擅长Java、微信小程序、Python、Android等技术&#xff0c;专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推…

【腾讯云Cloud Studio实战训练营】用Vue+Vite快速构建完成交互式3D小故事

&#x1f440;前置了解&#xff1a;(官网 https://cloudstudio.net/) 什么是Cloud Studio&#xff1f; Cloud Studio 是基于浏览器的集成式开发环境&#xff08;IDE&#xff09;&#xff0c;为开发者提供了一个永不间断的云端工作站。用户在使用 Cloud Studio 时无需安装&#…

FPGA_学习_16_IP核_ROM(延迟一拍输出)

在寻找APD最合适的偏压的过程中&#xff0c;一般会用到厂商提供一条曲线&#xff0c;横坐标是温度的变化&#xff0c;纵坐标表示击穿偏压的变化&#xff0c;但每个产品真正的击穿偏压是有差异的。 为了能够快速的找到当前温度下真实的击穿偏压&#xff0c;我们可以这样做&#…

5.5.webrtc的线程管理

今天呢&#xff0c;我们来介绍一下线程的管理与绑定&#xff0c;首先我们来看一下web rtc中的线程管理类&#xff0c;也就是thread manager。对于这个类来说呢&#xff0c;其实实现非常简单&#xff0c;对吧&#xff1f; 包括了几个重要的成员&#xff0c;第一个成员呢就是ins…

小研究 - Android 字节码动态分析分布式框架(三)

安卓平台是个多进程同时运行的系统&#xff0c;它还缺少合适的动态分析接口。因此&#xff0c;在安卓平台上进行全面的动态分析具有高难度和挑战性。已有的研究大多是针对一些安全问题的分析方法或者框架&#xff0c;无法为实现更加灵活、通用的动态分析工具的开发提供支持。此…

五款拿来就能用的炫酷表白代码

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 五款炫酷表白代码 1、无限弹窗表白2、做我女朋友好吗&#xff0c;不同意就关机3、…

无涯教程-PHP - XML GET

XML Get已用于从xml文件获取节点值。以下示例显示了如何从xml获取数据。 Note.xml 是xml文件&#xff0c;可以通过php文件访问。 <SUBJECT><COURSE>Android</COURSE><COUNTRY>India</COUNTRY><COMPANY>LearnFk</COMPANY><PRICE…

c#设计模式-结构型模式 之 桥接模式

前言 桥接模式是一种设计模式&#xff0c;它将抽象与实现分离&#xff0c;使它们可以独立变化。这种模式涉及到一个接口作为桥梁&#xff0c;使实体类的功能独立于接口实现类。这两种类型的类可以结构化改变而互不影响。 桥接模式的主要目的是通过将实现和抽象分离&#xff0c;…

excel 核心快捷键用法

1、wps怎样只复制公示计算出来的数据 1.1、按下快捷键“CtrlC”&#xff0c;复制该单元格。 1.2、按下快捷键“ShiftCtrlV”&#xff0c;即“粘贴为数值”&#xff0c;即可只复制数字而不复制该单元格的公式 1.3、wps怎样只复制公示计算出来的数据_百度知道https://zhidao.baid…

数据结构之并查集

并查集 1. 并查集原理2. 并查集实现3. 并查集应用3.1 省份数量3.2 等式方程的可满足性 4. 并查集的优缺点及时间复杂度 1. 并查集原理 并查表原理是一种树型的数据结构&#xff0c;用于处理一些不相交集合的合并及查询问题。并查集的思想是用一个数组表示了整片森林&#xff0…

如何将图片应用于所有的PPT页面?

问题&#xff1a;如何快速将图片应用到所有PPT页面&#xff1f; 解答&#xff1a;有两种方法可以解决这个问题。第一种用母板。第二种用PPT背景功能。 解决有时候汇报的时候&#xff0c;ppt中背景图片修改不了以及不知道如何查找&#xff0c;今天按照逆向过程进行操作 方法1…

尚硅谷css3笔记

目录 一、新增长度单位 二、新增盒子属性 1.border-box 怪异盒模型 2.resize 调整盒子大小 3.box-shadow 盒子阴影 案例&#xff1a;鼠标悬浮盒子上时&#xff0c;盒子有一个过度的阴影效果 三、新增背景属性 1.background-origin 设置背景图的原点 2.background-clip 设置背…

vue watch监听对象 新旧值一样

vue3中watch监听新旧值一样的处理方式 废话不多说&#xff0c;直接上代码 const objectReactive reactive({user: {id: 1,name: zhangsan,age: 18,}, }) watch(() > objectReactive.user,(n, o) > {console.log(n, o)if (JSON.stringify(n) JSON.stringify(o)) {retu…

【Elasticsearch】spring-boot-starter-data-elasticsearch的使用以及Elasticsearch集群的连接

更多有关博主写的往期Elasticsearch文章 标题地址【ElasticSearch 集群】Linux安装ElasticSearch集群&#xff08;图文解说详细版&#xff09;https://masiyi.blog.csdn.net/article/details/131109454基于SpringBootElasticSearch 的Java底层框架的实现https://masiyi.blog.c…

STM32 定时器复习

12MHz晶振的机器周期是1us&#xff0c;因为单片机的一个机器周期由6个状态周期组成&#xff0c;1个机器周期6个状态周期12个时钟周期&#xff0c;因此机器周期为1us。 51单片机常用 for(){__nop(); //执行一个机器周期&#xff0c;若想循环n us&#xff0c;则循环n次。 }软件…

Streamlit项目:基于讯飞星火认知大模型开发Web智能对话应用

文章目录 1 前言2 API获取3 官方文档的调用代码4 Streamlit 网页的搭建4.1 代码及效果展示4.2 Streamlit相关知识点 5 结语 1 前言 科大讯飞公司于2023年8月15日发布了讯飞认知大模型V2.0&#xff0c;这是一款集跨领域知识和语言理解能力于一体的新一代认知智能大模型。前日&a…

Stable Diffusion原理详解

Stable Diffusion原理详解 最近AI图像生成异常火爆&#xff0c;听说鹅厂都开始用AI图像生成做前期设定了&#xff0c;小厂更是直接用AI替代了原画师的岗位。这一张张丰富细腻、风格各异、以假乱真的AI生成图像&#xff0c;背后离不开Stable Diffusion算法。 Stable Diffusion…

java 微信小程序授权获取用户手机号码 (完整demo)

1. 前端获取动态令牌 code https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/getPhoneNumber.html 2. 后端接收令牌code, 调用微信获取手机号接口 POST https://api.weixin.qq.com/wxa/business/getuserphonenumber?access_tokenACCESS_TOKEN 3. con…