数据结构之并查集

并查集

  • 1. 并查集原理
  • 2. 并查集实现
  • 3. 并查集应用
    • 3.1 省份数量
    • 3.2 等式方程的可满足性
  • 4. 并查集的优缺点及时间复杂度

1. 并查集原理

并查表原理是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。并查集的思想是用一个数组表示了整片森林(parent),树的根节点唯一标识了一个集合,我们只要找到了某个元素的树根,就能确定它在哪个集合里。这类问题的抽象数据类型称为并查集(union-find set)。
这个数据结构主要用于解决一些元素分组的问题,比如在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。
并查集怎样使用?并查集是用一个数组来进行表示,其中数组下标用来表示一个个体的编号, 数组中存的元素表示的是该个体在哪一个组,用组中的某个元素表示该组有多少个体。
并查集通常用-1进行初始化,为什么不用0/1…呢?这是因为数组中的元素代表的是该个体在哪一个组,如果用0/1进行初始化,那么如果某个个体是自己一个为一组,但并查集中所表示的又是该个体是0/1组的。
接下来举一个并查集的例子
比如:某天有一个班级需要进行分组完成任务,已知该班有10位同学,将其分成3组,每组分别有5、 3、 2位同学。现在给这些学生进行编号:{0,1,2,3,4,5,6,7,8,9},其中{0,5,7,8,9},{1,4,6},{2,3}分别是每组同学的编号,0,1,2分别是每组的组长。接下来用一个并查集来表示该结构。
在这里插入图片描述
然后每收一个组员,就将该组员的元素加到组长下面,该组员存放的是组长的下边,如下图所示:0,1,2存放的绝对值就是每组成员的个数。
在这里插入图片描述
仔细观察数组中内的变化,可以得出以下结论:

  1. 数组的下标对应集合中元素的编号;
  2. 数组中如果为负数,负号代表根,数字代表该集合中元素个数;
  3. 数组中如果为非负数,代表该元素双亲在数组中的下标。
    每个小组去做相似的任务,但是发现1组长和2组长所带领的小队进度较慢,时间又有些不够,于是让这两个小组合并,2组长任然是一个组长,这是比昂查表发生如下变化:

在这里插入图片描述
通过以上例子可知,并查集一般可以解决如下问题:

  1. 查找元素属于哪个集合:沿着数组表示树形关系以上一直找到根(即:树中中元素为负数的位置)
  2. 查看两个元素是否属于同一个集合:沿着数组表示的树形关系往上一直找到树的根,如果根相同表明在同一个集合,否则不在
  3. 将两个集合归并成一个集合:将两个集合中的元素合并,将一个集合名称改成另一个集合的名称
  4. 集合的个数:遍历数组,数组中元素为负数的个数即为集合的个数。

2. 并查集实现

接下来用代码来实现如上数据结构。

  1. 查找元素属于哪个集合
  2. 查看两个元素是否属于同一个集合
  3. 将两个集合归并成一个集合
  4. 集合的个数
#include <iostream>
#include <vector>
#include <assert.h>
using namespace std;class UnionFindSet
{
public:UnionFindSet(int size):_set(size, -1){}size_t FindRoot(int x) //1.查找元素属于哪个集合{assert(x < _set.size());while (_set[x] >= 0) //可能有两个集合合并,如上述两个组合并的例子;所以需要循环,找到小于0的下标x = _set[x];return x;}bool IsSameRoot(int x1, int x2) //2.查看两个元素是否属于同一个集合{int root1 = FindRoot(x1);int root2 = FindRoot(x2);if (root1 == root2)return true;elsereturn false;}void Union(int x1, int x2) //3.将两个集合合并{int root1 = FindRoot(x1); //先找到两个集合各自的根int root2 = FindRoot(x2);if (root1 != root2) //如果根不相等,则将两个根进行合并{_set[root1] += _set[root2];_set[root2] = root1;}}size_t SetCount() //4.集合的个数{size_t count = 0;for (size_t i = 0; i < _set.size(); ++i){if (_set[i] < 0)++count;}return count;}
private:vector<int> _set;
};

测试代码如下:

void test()
{UnionFindSet st(10);st.Union(0, 5);st.Union(0, 7);st.Union(0, 8);st.Union(0, 9);st.Union(1, 4);st.Union(1, 6);st.Union(2, 3);cout << "4在集合:" << st.FindRoot(4) << endl;cout << "5和7是否在同一个集合中(0/1):" << st.IsSameRoot(5, 7) << endl;cout << "5和6是否在同一个集合中(0/1):" << st.IsSameRoot(5, 6) << endl;cout << "合并前集合的个数:" << st.SetCount() << endl;cout << "合并集合1和集合2" << endl;st.Union(1, 2);cout << "合并后集合的个数:" << st.SetCount() << endl;}

运行结果如下:
在这里插入图片描述

3. 并查集应用

3.1 省份数量

1.题目描述:有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
在这里插入图片描述
2.题目分析:可以用并查集来实现,对题目进行分析可以知道,要求集合的数量,所以需要上述3集合的合并函数和4集合的数量函数,其中3中又需要1函数,可以简单实现这几个函数,然后遍历题目中isConnected数组,只需要遍历一半即可。
3.代码如下:

class Solution {
public:size_t FindRoot(vector<int>& ufs, int x){while (ufs[x] >= 0)x = ufs[x];return x;}void Union(vector<int>& ufs, int x1, int x2){int root1 = FindRoot(ufs, x1);int root2 = FindRoot(ufs, x2);if (root1 != root2){ufs[root1] += ufs[root2];ufs[root2] = root1;}}size_t UfsCount(vector<int>& ufs){int count = 0;for (auto& x : ufs)if (x < 0)++count;return count;}int findCircleNum(vector<vector<int>>& isConnected){int n = isConnected.size();vector<int> ufs(n, -1);//合并相连的城市for (int i = 0; i < n; ++i){for (int j = i + 1; j < n; ++j){if (isConnected[i][j] == 1)Union(ufs, i, j);}}//寻找不相连省份的数量size_t count = UfsCount(ufs);return count;}
};

3.2 等式方程的可满足性

1.题目描述:给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:“a==b” 或 “a!=b”。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。

提示:

  1. <= equations.length <= 500
  2. equations[i].length == 4
  3. equations[i][0] 和 equations[i][3] 是小写字母
  4. equations[i][1] 要么是 ‘=’,要么是 ‘!’
  5. equations[i][2] 是 ‘=’
    在这里插入图片描述
    2.题目分析:这道题需要合并相等的字母,所以需要函数3和1,由题知equations[i][0] 和 equations[i][3] 是小写字母,所以开辟一个大小为26的数组,把相等的字母合并为一组,再寻找不相等的,如果不相等得两个字母有相同的根,则返回false。

3.代码如下:

class Solution {
public:size_t FindRoot(vector<int>& ufs, int x){while (ufs[x] >= 0)x = ufs[x];return x;}void Union(vector<int>& ufs, int x1, int x2){int root1 = FindRoot(ufs, x1);int root2 = FindRoot(ufs, x2);if (root1 != root2){ufs[root1] += ufs[root2];ufs[root2] = root1;}}bool equationsPossible(vector<string>& equations){vector<int> ufs(26, -1);// 把相等的值加到一个集合中for (auto& str : equations){if (str[1] == '='){Union(ufs, str[0] - 'a', str[3] - 'a');}}// 在遍历一遍,找不相等的,不相等的根一定在一个集合for (auto& str : equations){if (str[1] == '!'){int root1 = FindRoot(ufs, str[0] - 'a');int root2 = FindRoot(ufs, str[3] - 'a');if (root1 == root2){return false;}}}return true;}
};

4. 并查集的优缺点及时间复杂度

并查集这个数据结构的优缺点是

优点:

  1. 简单:并查集只需要一个一维数组来存储每个元素的父节点,操作也很简单,一般只需要两个基本函数:find和union。
  2. 高效:并查集的时间复杂度主要取决于树的高度,通过一些优化策略,如路径压缩和按秩合并,可以将树的高度控制在对数级别,从而实现近乎常数的查询和合并操作。
  3. 灵活:并查集可以用来解决各种涉及到元素分组、连通性、最小生成树等问题,可以根据具体问题进行扩展和修改。

缺点:

  1. 动态:并查集只能支持动态添加和合并元素,不能支持删除和分割元素,这限制了它的应用范围。
  2. 无序:并查集不能保证每个集合内部的元素是有序的,也不能提供遍历每个集合内部元素的方法,这使得它难以处理一些需要排序或遍历的问题。
  3. 单向:并查集只能判断两个元素是否属于同一个集合,不能判断两个元素之间的具体关系,如距离、方向、层次等,这使得它难以处理一些需要细节信息的问题。

时间复杂度
并查集的时间复杂度主要取决于树的高度,通过一些优化策略,如路径压缩和按秩合并,可以将树的高度控制在对数级别,从而实现近乎常数的查询和合并操作。具体来说:
初始化:O(n),其中n为元素个数。
查找:O(log n),其中n为元素个数。
合并:O(log n),其中n为元素个数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45917.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何将图片应用于所有的PPT页面?

问题&#xff1a;如何快速将图片应用到所有PPT页面&#xff1f; 解答&#xff1a;有两种方法可以解决这个问题。第一种用母板。第二种用PPT背景功能。 解决有时候汇报的时候&#xff0c;ppt中背景图片修改不了以及不知道如何查找&#xff0c;今天按照逆向过程进行操作 方法1…

尚硅谷css3笔记

目录 一、新增长度单位 二、新增盒子属性 1.border-box 怪异盒模型 2.resize 调整盒子大小 3.box-shadow 盒子阴影 案例&#xff1a;鼠标悬浮盒子上时&#xff0c;盒子有一个过度的阴影效果 三、新增背景属性 1.background-origin 设置背景图的原点 2.background-clip 设置背…

【Elasticsearch】spring-boot-starter-data-elasticsearch的使用以及Elasticsearch集群的连接

更多有关博主写的往期Elasticsearch文章 标题地址【ElasticSearch 集群】Linux安装ElasticSearch集群&#xff08;图文解说详细版&#xff09;https://masiyi.blog.csdn.net/article/details/131109454基于SpringBootElasticSearch 的Java底层框架的实现https://masiyi.blog.c…

STM32 定时器复习

12MHz晶振的机器周期是1us&#xff0c;因为单片机的一个机器周期由6个状态周期组成&#xff0c;1个机器周期6个状态周期12个时钟周期&#xff0c;因此机器周期为1us。 51单片机常用 for(){__nop(); //执行一个机器周期&#xff0c;若想循环n us&#xff0c;则循环n次。 }软件…

Streamlit项目:基于讯飞星火认知大模型开发Web智能对话应用

文章目录 1 前言2 API获取3 官方文档的调用代码4 Streamlit 网页的搭建4.1 代码及效果展示4.2 Streamlit相关知识点 5 结语 1 前言 科大讯飞公司于2023年8月15日发布了讯飞认知大模型V2.0&#xff0c;这是一款集跨领域知识和语言理解能力于一体的新一代认知智能大模型。前日&a…

Stable Diffusion原理详解

Stable Diffusion原理详解 最近AI图像生成异常火爆&#xff0c;听说鹅厂都开始用AI图像生成做前期设定了&#xff0c;小厂更是直接用AI替代了原画师的岗位。这一张张丰富细腻、风格各异、以假乱真的AI生成图像&#xff0c;背后离不开Stable Diffusion算法。 Stable Diffusion…

java 微信小程序授权获取用户手机号码 (完整demo)

1. 前端获取动态令牌 code https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/getPhoneNumber.html 2. 后端接收令牌code, 调用微信获取手机号接口 POST https://api.weixin.qq.com/wxa/business/getuserphonenumber?access_tokenACCESS_TOKEN 3. con…

[附源码]计算机毕业设计-JAVA火车票订票管理系统-springboot-论-文-ppt

PPT论文 文章目录 前言一、主要技术javaMysql数据库JSP技术 二、系统设计三、功能截图总结 前言 本论文主要论述了如何使用JAVA语言开发一个火车订票管理系统 &#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想…

ORB-SLAM2学习笔记7之System主类和多线程

文章目录 0 引言1 整体框架1.1 整体流程 2 System主类2.1 成员函数2.2 成员变量 3 多线程3.1 ORB-SLAM2中的多线程3.2 加锁 0 引言 ORB-SLAM2是一种基于特征的视觉SLAM&#xff08;Simultaneous Localization and Mapping&#xff09;系统&#xff0c;它能够从单个、双目或RBG…

线性代数的学习和整理7:各种特殊矩阵(草稿-----未完成)

目录 1 单位矩阵 为什么单位矩阵I是 [1,0;0,1]T 而不是[1,1;1,1]T 2 旋转矩阵 3 伸缩矩阵 放大缩小倍数矩阵 4 镜像矩阵 5 剪切矩阵 1 矩阵 1.1 1维的矩阵 行向量列向量 1.2 2维的矩阵 一般2维表都可以看作矩阵。矩阵的每个维度可以是1个数字&#xff0c;也可以是多个…

Appium-移动端自动测试框架,如何入门?

Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学习下Appium如何入门&#xff0c;那么我们就直奔主题。文章结构如下&#xff1a; 1、为什么要使用Appium&#xff1f; 2、如何搭建Appium工具环境?(超详细&#xff09; 3、通过demo演示Appium的使用 4、Appium如何…

通讯录的实现

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大一&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 望小伙伴们点赞&#x1f44d;收藏✨加关注哟&#x1f495;&#x1…

深入理解分布式架构,构建高效可靠系统的关键

深入探讨分布式架构的核心概念、优势、挑战以及构建过程中的关键考虑因素。 引言什么是分布式架构&#xff1f;分布式架构的重要性 分布式系统的核心概念节点和通信数据分区与复制一致性与一致性模型负载均衡与容错性 常见的分布式架构模式客户端-服务器架构微服务架构事件驱动…

[国产MCU]-W801开发实例-GPIO输入与中断

GPIO输入与中断 文章目录 GPIO输入与中断1、硬件准备2、软件准备3、驱动实现4、驱动测试W801的GPIO支持软件配置中断,中断触发方式包含:上升沿触发、下降沿触发、高电平触发、低电平触发。本文在前面[ 国产MCU]-W801开发实例-按键与GPIO输入的基础上实现GPIO中断配置。 1、硬…

分布式 | 如何搭建 DBLE 的 JVM 指标监控系统

本篇文章采用 Docker 方式搭建 Grafana Prometheus 实现对 DBLE 的 JVM 相关指标的监控系统。 作者&#xff1a;文韵涵 爱可生 DBLE 团队开发成员&#xff0c;主要负责 DBLE 需求开发&#xff0c;故障排查和社区问题解答。 本文来源&#xff1a;原创投稿 爱可生开源社区出品&a…

亚马逊点击广告对于卖家有什么好处

亚马逊点击广告对卖家来说有许多好处&#xff0c;它们可以帮助卖家增加产品曝光、提高销售量&#xff0c;并改善他们在亚马逊平台上的竞争地位。以下是一些卖家可能从亚马逊点击广告中获益的好处&#xff1a; 1、增加产品曝光度&#xff1a;通过在关键搜索结果页面上投放广告&…

MySQL8.0.26-Linux版安装

MySQL8.0.26-Linux版安装 1. 准备一台Linux服务器 云服务器或者虚拟机都可以; Linux的版本为 CentOS7; 2. 下载Linux版MySQL安装包 MySQL :: Download MySQL Community Server (Archived Versions) 3. 上传MySQL安装包 4. 创建目录,并解压 mkdir mysql ​ tar -xvf mysql-8…

Flink 数据集成服务在小红书的降本增效实践

摘要&#xff1a;本文整理自实时引擎研发工程师袁奎&#xff0c;在 Flink Forward Asia 2022 数据集成专场的分享。本篇内容主要分为四个部分&#xff1a; 小红书实时服务降本增效背景Flink 与在离线混部实践实践过程中遇到的问题及解决方案未来展望 点击查看原文视频 & 演…

Spring Clould 负载均衡 - Ribbon

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; Ribbon-负载均衡原理&#xff08;P14&#xff09; 具体实现时通过LoaBalanced注解实现&#xff0c;表示RestTemplate要被Ribbon拦截处理 orderservice调用user时候&#xff0c…

FPGA原理与结构——RAM IP核的使用与测试

目录 一、前言 二、RAM IP核定制 1、RAM IP核 step1 打开vivado工程&#xff0c;点击左侧栏中的IP Catalog step2 在搜索栏搜索RAM&#xff0c;找到Block Memory Generator IP核&#xff1a; 2、IP核定制 step3 Baisc界面定制 step4 端口定制 step5 Other Options st…