pcl里面使用KdTree来搜索

from:https://blog.csdn.net/qq_25491201/article/details/51135054

下面这个教程我们将学会怎么用KdTree找一个特殊点附近的K个最近邻,然后我们也将复习怎么通过一个特殊的半径来找里面所有的近邻。

一个k-d树,或者k维的树是一个计算机科学里面的数据结构。它是一个有其它约束影响的二叉搜索树。K-d树是在深度和最近邻搜索里面很有用的。我们这次的目的是生成一个3维的k-d trees。一个k-d tree的每个层次在某个维度上分割成所有的子树,使用一个垂直于相应坐标轴的高维平面。在树的根部,所有的子树将会被分割以第一维(如果第一维坐标系比根部少,它将会成为左子树,如果比根部多,它将会成为右子树)。每一层的树将会在下一层进行分叉,它会跳转到第一层如果全部都分完了。最有效的去建立k-d tree的方法是使用一个分割的方法,就像快速排序。你可以在你的左子树和右子树上重复这一过程,直到最后一个你要去分割的树只有一个元素。

2维的k-d树

下面是一个最近邻搜索的工作

 

代码

#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>

#include <iostream>
#include <vector>
#include <ctime>

int
main (int argc, char** argv)
{
  srand (time (NULL));

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

  // Generate pointcloud data
  cloud->width = 1000;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
  }

  pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;

  kdtree.setInputCloud (cloud);

  pcl::PointXYZ searchPoint;

  searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);

  // K nearest neighbor search

  int K = 10;

  std::vector<int> pointIdxNKNSearch(K);
  std::vector<float> pointNKNSquaredDistance(K);

  std::cout << "K nearest neighbor search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with K=" << K << std::endl;

  if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxNKNSearch[i] ].x 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].y 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].z 
                << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
  }

  // Neighbors within radius search

  std::vector<int> pointIdxRadiusSearch;
  std::vector<float> pointRadiusSquaredDistance;

  float radius = 256.0f * rand () / (RAND_MAX + 1.0f);

  std::cout << "Neighbors within radius search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with radius=" << radius << std::endl;


  if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].y 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].z 
                << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
  }


  return 0;
}
下面的代码是创造了kdtree这个对象,并把我们随机生成的点云作为输入。

  pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;

  kdtree.setInputCloud (cloud);

  pcl::PointXYZ searchPoint;

  searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
我们接下去创造了一个整数(通常设置为10)和两个向量存储搜索后的K个最近邻。

  // K nearest neighbor search

  int K = 10;

  std::vector<int> pointIdxNKNSearch(K);
  std::vector<float> pointNKNSquaredDistance(K);

  std::cout << "K nearest neighbor search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with K=" << K << std::endl;
假设我们的kdtree返回了大于0个近邻。那么它将打印出在我们"searchPoint"附近的10个最近的邻居并把它们存到先前创立的向量中。

  if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxNKNSearch[i] ].x 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].y 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].z 
                << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
  }
 // Neighbors within radius search

  std::vector<int> pointIdxRadiusSearch;
  std::vector<float> pointRadiusSquaredDistance;

  float radius = 256.0f * rand () / (RAND_MAX + 1.0f);
我们把向量里面的点打印出来

  if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].y 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].z 
                << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
  }
结果

K nearest neighbor search at (455.807 417.256 406.502) with K=10
  494.728 371.875 351.687 (squared distance: 6578.99)
  506.066 420.079 478.278 (squared distance: 7685.67)
  368.546 427.623 416.388 (squared distance: 7819.75)
  474.832 383.041 323.293 (squared distance: 8456.34)
  470.992 334.084 468.459 (squared distance: 10986.9)
  560.884 417.637 364.518 (squared distance: 12803.8)
  466.703 475.716 306.269 (squared distance: 13582.9)
  456.907 336.035 304.529 (squared distance: 16996.7)
  452.288 387.943 279.481 (squared distance: 17005.9)
  476.642 410.422 268.057 (squared distance: 19647.9)
Neighbors within radius search at (455.807 417.256 406.502) with radius=225.932
  494.728 371.875 351.687 (squared distance: 6578.99)
  506.066 420.079 478.278 (squared distance: 7685.67)
  368.546 427.623 416.388 (squared distance: 7819.75)
  474.832 383.041 323.293 (squared distance: 8456.34)
  470.992 334.084 468.459 (squared distance: 10986.9)
  560.884 417.637 364.518 (squared distance: 12803.8)
  466.703 475.716 306.269 (squared distance: 13582.9)
  456.907 336.035 304.529 (squared distance: 16996.7)
  452.288 387.943 279.481 (squared distance: 17005.9)
  476.642 410.422 268.057 (squared distance: 19647.9)
  499.429 541.532 351.35 (squared distance: 20389)
  574.418 452.961 334.7 (squared distance: 20498.9)
  336.785 391.057 488.71 (squared distance: 21611)
  319.765 406.187 350.955 (squared distance: 21715.6)
  528.89 289.583 378.979 (squared distance: 22399.1)
  504.509 459.609 541.732 (squared distance: 22452.8)
  539.854 349.333 300.395 (squared distance: 22936.3)
  548.51 458.035 292.812 (squared distance: 23182.1)
  546.284 426.67 535.989 (squared distance: 25041.6)
  577.058 390.276 508.597 (squared distance: 25853.1)
  543.16 458.727 276.859 (squared distance: 26157.5)
  613.997 387.397 443.207 (squared distance: 27262.7)
  608.235 467.363 327.264 (squared distance: 32023.6)
  506.842 591.736 391.923 (squared distance: 33260.3)
  529.842 475.715 241.532 (squared distance: 36113.7)
  485.822 322.623 244.347 (squared distance: 36150.5)
  362.036 318.014 269.201 (squared distance: 37493.6)
  493.806 600.083 462.742 (squared distance: 38032.3)
  392.315 368.085 585.37 (squared distance: 38442.9)
  303.826 428.659 533.642 (squared distance: 39392.8)
  616.492 424.551 289.524 (squared distance: 39556.8)
  320.563 333.216 278.242 (squared distance: 41804.5)
  646.599 502.256 424.46 (squared distance: 43948.8)
  556.202 325.013 568.252 (squared distance: 44751)
  291.27 497.352 515.938 (squared distance: 45463.9)
  286.483 322.401 495.377 (squared distance: 45567.2)
  367.288 550.421 550.551 (squared distance: 46318.6)
  595.122 582.77 394.894 (squared distance: 46938.1)
  256.784 499.401 379.931 (squared distance: 47064.1)
  430.782 230.854 293.829 (squared distance: 48067.2)
  261.051 486.593 329.854 (squared distance: 48612.7)
  602.061 327.892 545.269 (squared distance: 48632.4)
  347.074 610.994 395.622 (squared distance: 49475.6)
  482.876 284.894 583.888 (squared distance: 49718.6)
  356.962 247.285 514.959 (squared distance: 50423.7)
  282.065 509.488 516.216 (squared distance: 50730.4)
--------------------- 
作者:Spongelady 
来源:CSDN 
原文:https://blog.csdn.net/qq_25491201/article/details/51135054 
版权声明:本文为博主原创文章,转载请附上博文链接!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/458123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux英文全称

su&#xff1a;Swith user 切换用户&#xff0c;切换到root用户cat: Concatenate 串联uname: Unix name 系统名称df: Disk free 空余硬盘du: Disk usage 硬盘使用率chown: Change owner 改变所有者chgrp: Change group 改变用户组ps&#xff1a;Process Status 进程状态ta…

caffe caffe.cpp 程序入口分析

from&#xff1a;https://blog.csdn.net/u014114990/article/details/47747025 caffe.cpp 程序入口分析&#xff0c; &#xff08;1&#xff09;main()函数中&#xff0c;输入的train&#xff0c;test&#xff0c;device_query&#xff0c;time。 通过下面两行进入程序。 …

php文件加密

1.在线加密 网址&#xff1a;http://www.phpjm.net/encode.html 本人测试过还可以&#xff0c;就是纯加密&#xff0c;没有解密。 转载于:https://www.cnblogs.com/wuheng1991/p/5332617.html

树莓派3 编译驱动

分为本地编译和交叉编译&#xff0c;主要是Makefile的写法&#xff1a; 本地编译&#xff1a; obj-m : bcm2835-i2s.o KDIR : /lib/modules/$(shell uname -r)/build PWD : $(shell pwd) all:make -C $(KDIR) M$(PWD) modules clean:rm *.o *.ko *.mod.c modules.order Module.…

caffe common 程序分析 类中定义类

caffe中 有 common.hpp 和common.cpp // The main singleton of Caffe class and encapsulates the boost and CUDA random number // generation function, providing a unified interface. caffe的singleton 类&#xff0c; 封装boost和cuda等操作。 提供一个统一的接口&am…

相机标定究竟在标定什么?

https://mp.weixin.qq.com/s/sWpVgwXmPvIEbObXvo1HRg

SpringMVC+Shiro权限管理

SpringMVCShiro权限管理 什么是权限呢&#xff1f;举个简单的例子&#xff1a; 我有一个论坛&#xff0c;注册的用户分为normal用户&#xff0c;manager用户。对论坛的帖子的操作有这些&#xff1a;添加&#xff0c;删除&#xff0c;更新&#xff0c;查看&#xff0c;回复我们规…

Caffe源码解析1:Blob

from:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 转载请注明出处&#xff0c;楼燚(y)航的blog&#xff0c;http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类&#xff0c;Blob是作为Caffe中数据流通的一个基本类&#xff0c;网络…

学后感

今天上了构建之法&#xff0c;我加深了对软件工程的了解&#xff0c;也明白了单元测试和回归测试对软件开发的重要性&#xff0c;然而在软件开发的过程中&#xff0c; 一个团队是需要一定的流程来管理开发活动&#xff0c;每个工程师在软件生命周期所做的工作也应该有一个流程&…

Caffe源码解析2:SycedMem

from:https://www.cnblogs.com/louyihang-loves-baiyan/p/5150554.html 转载请注明出处&#xff0c;楼燚(y)航的blog&#xff0c;http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道&#xff0c;这是在做内存同步的操作。这类个类的代码比较少&#xff0c;…

REST学习

RPC架构与REST架构 RPC&#xff1a;RPC将服务器看作一些列动作的集合(需要做某件事) REST&#xff1a;将服务器看作分布式对象集合&#xff0c;客户端通过调用这些对象上的方法来执行特定的任务&#xff0c;组件交互的可伸缩性、接口的通用性、组件的独立部署、以及用来减少交互…

HI3559A和AI深度学习框架caffe

from:http://blog.sina.com.cn/s/blog_156e567660102ygdf.html 1、HI3559A支持深度学习框架caffe。其中的NNIE神经网络加速单元是主要的属性。 2、caffe是一种快速深度学习框架和TensorFlow一样是一组标准深度学习开源框架。 3、对应想尝试AI深度学习的朋友可以按照网上的流…

UValive4195 Heroes of Money and Magic

斜率优化 想骂人了&#xff0c;马格吉最后调了半小时 TMD造数据的人是SB吧&#xff1f; 我写 while(scanf("%d%d",&n,&m)!EOF&&n) 然后就TMD无限WA...WA...WA... 尼玛 改成while(scanf("%d%d",&n,&m),n) 就过了&#xff0c;就过了…

Google Protocol Buffer 的使用和原理

from: https://www.ibm.com/developerworks/cn/linux/l-cn-gpb/index.html 简介 什么是 Google Protocol Buffer&#xff1f; 假如您在网上搜索&#xff0c;应该会得到类似这样的文字介绍&#xff1a; Google Protocol Buffer( 简称 Protobuf) 是 Google 公司内部的混合语言…

Electron

跨平台桌面app开发 Appjs hex nwjs electron 官网&#xff1a;http://electron.atom.io/ 中文文档&#xff1a;https://github.com/atom/electron/tree/master/docs-translations/zh-CN zcbenz&#xff1a; https://github.com/zcbenz https://github.com/atom/electron simple…

WCF技术剖析之十八:消息契约(Message Contract)和基于消息契约的序列化

在本篇文章中&#xff0c;我们将讨论WCF四大契约&#xff08;服务契约、数据契约、消息契约和错误契约&#xff09;之一的消息契约&#xff08;Message Contract&#xff09;。服务契约关注于对服务操作的描述&#xff0c;数据契约关注于对于数据结构和格式的描述&#xff0c;而…

【深度学习数据集】常用公开图片数据集下载

1.MNIST MNIST是一个手写数字数据库&#xff0c;它有60000个训练样本集和10000个测试样本集&#xff0c;每个样本图像的宽高为28*28。此数据集是以二进制存储的&#xff0c;不能直接以图像格式查看&#xff0c;不过很容易找到将其转换成图像格式的工具。 最早的深度卷积网络Le…

常用的几种卷积神经网络介绍

常用的几种卷积神经网络介绍 标签&#xff08;空格分隔&#xff09;&#xff1a; 深度学习 这是一篇基础理论的博客&#xff0c;基本手法是抄、删、改、查&#xff0c;毕竟介绍这几个基础网络的博文也挺多的&#xff0c;就算是自己的一个笔记吧&#xff0c;以后忘了多看看。主…

计算客 (人人都有极客精神)爆力

人人公司是一家极为鼓舞极客精神的公司&#xff0c;当有重要的项目须要上线但又时间太紧。甚至须要当天上线的时候。往往会挂起海盗旗开启电子日期显示。让大家能够在对时间有更明白的感知的情况下&#xff0c;同心协力搞定重要的项目。海盗旗下方的电子屏显示的日期形式为 YYY…

深度学习案例

1. neural-style&#xff1a;利用卷积神经网络将一幅图像的内容与另一幅图像的风格相结合 https://github.com/jcjohnson/neural-style 2.Nerual Doodles&#xff1a;把 2 位的 Doodle 转成精良的艺术品 https://github.com/alexjc/neural-doodle 3. srez&#xff1a;通过深度…