【深度学习数据集】常用公开图片数据集下载

1.MNIST

 

MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28。此数据集是以二进制存储的,不能直接以图像格式查看,不过很容易找到将其转换成图像格式的工具。

最早的深度卷积网络LeNet便是针对此数据集的,当前主流深度学习框架几乎无一例外将MNIST数据集的处理作为介绍及入门第一教程,其中Tensorflow关于MNIST的教程非常详细。

2.Imagenet

 

MNIST将初学者领进了深度学习领域,而Imagenet数据集对深度学习的浪潮起了巨大的推动作用。深度学习领域大牛Hinton在2012年发表的论文《ImageNet Classification with Deep Convolutional Neural Networks》在计算机视觉领域带来了一场“革命”,此论文的工作正是基于Imagenet数据集。

Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注,具体信息如下:

1)Total number of non-empty synsets: 21841

2)Total number of images: 14,197,122

3)Number of images with bounding box annotations: 1,034,908

4)Number of synsets with SIFT features: 1000

5)Number of images with SIFT features: 1.2 million

Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。

3.COCO

 

COCO(Common Objects in Context)是一个新的图像识别、分割和图像语义数据集,它有如下特点:

1)Object segmentation

2)Recognition in Context

3)Multiple objects per image

4)More than 300,000 images

5)More than 2 Million instances

6)80 object categories

7)5 captions per image

8)Keypoints on 100,000 people

COCO数据集由微软赞助,其对于图像的标注信息不仅有类别、位置信息,还有对图像的语义文本描述,COCO数据集的开源使得近两三年来图像分割语义理解取得了巨大的进展,也几乎成为了图像语义理解算法性能评价的“标准”数据集。

4.PASCAL VOC

 

PASCAL VOC挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。PASCAL VOC图片集包括20个目录:人类;动物(鸟、猫、牛、狗、马、羊);交通工具(飞机、自行车、船、公共汽车、小轿车、摩托车、火车);室内(瓶子、椅子、餐桌、盆栽植物、沙发、电视)。PASCAL VOC挑战赛在2012年后便不再举办,但其数据集图像质量好,标注完备,非常适合用来测试算法性能。

 

5.CIFAR-10

CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。CIFAR-100与CIFAR-10类似,包含100个类,每类有600张图片,其中500张用于训练,100张用于测试;这100个类分组成20个超类。图像类别均有明确标注。CIFAR对于图像分类算法测试来说是一个非常不错的中小规模数据集。
--------------------- 
作者:远方_boy 
来源:CSDN 
原文:https://blog.csdn.net/weixin_41683218/article/details/81191073 
版权声明:本文为博主原创文章,转载请附上博文链接!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/458106.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常用的几种卷积神经网络介绍

常用的几种卷积神经网络介绍 标签(空格分隔): 深度学习 这是一篇基础理论的博客,基本手法是抄、删、改、查,毕竟介绍这几个基础网络的博文也挺多的,就算是自己的一个笔记吧,以后忘了多看看。主…

计算客 (人人都有极客精神)爆力

人人公司是一家极为鼓舞极客精神的公司,当有重要的项目须要上线但又时间太紧。甚至须要当天上线的时候。往往会挂起海盗旗开启电子日期显示。让大家能够在对时间有更明白的感知的情况下,同心协力搞定重要的项目。海盗旗下方的电子屏显示的日期形式为 YYY…

深度学习案例

1. neural-style:利用卷积神经网络将一幅图像的内容与另一幅图像的风格相结合 https://github.com/jcjohnson/neural-style 2.Nerual Doodles:把 2 位的 Doodle 转成精良的艺术品 https://github.com/alexjc/neural-doodle 3. srez:通过深度…

深度学习图像标注工具汇总

对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具: Labelme Labe…

UIBarbuttonItem

APPDelegate: - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { self.window [[UIWindow alloc]initWithFrame:[UIScreen mainScreen].bounds]; //创建主界面,导航栏的第一个页面 FirstViewContr…

深度残差网络ResNet解析

ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet&#x…

Oracle-一个中文汉字占几个字节?

Oracle 一个中文汉字占用几个字节 Oracle 一个中文汉字 占用几个字节,要根据Oracle中字符集编码决定!!! 1. 如果定义为VARCHAR2(32 CHAR),那么该列最多就可以存储32个汉字,如果定义字段为VARCHAR2(32) 或VARCHAR2(32 B…

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范…

iPhone屏幕尺寸/launch尺寸/icon尺寸

屏幕尺寸 6p/6sp 414 X 7366/6s 375 X 6675/5s 320 X 568 4/4s 320 X 480launch尺寸 6p/6sp 1242 X 2208 3x6/6s 750 X 1334 2x5/5s 640 X 1136 2x4/4s 640 X 960 2x仔细观察会发现l…

CNN的发展历史(LeNet,Alexnet,VGGNet,GoogleNet,ReSNet)

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需…

读取csv格式的数据

1.直接上代码&#xff0c;关键是会用 2.代码如下&#xff1a; <?php #添加推荐到英文站 $file fopen(code.csv,r); while ($data fgetcsv($file)) { //每次读取CSV里面的一行内容 //print_r($data); //此为一个数组&#xff0c;要获得每一个数据&#xff0c;访问数组下…

如何在VMWare的Ubuntu虚拟机中设置共享文件夹

亲测有效&#xff1a;Ubuntu18.04 LTS、虚拟机VMware Workstation 14 Pro 14.1.3 build-9474260、Window7 自己的第一篇博文&#xff0c;由于时&#xff08;shuǐ&#xff09;间&#xff08;png&#xff09;原&#xff08;yǒu&#xff09;因&#xff08;xin&#xff09;&…

容器+AOP实现动态部署(四)

上篇咱们介绍了容器和AOP的结合&#xff0c;结合后怎样将对象增强服务并没有过多的说明&#xff0c;这里将详细说明怎样将对象 进行增强 &#xff0c;达到一个一对多和多对多的增强方式 先从简单的方式说起 /** *JDK代理类&#xff0c;实现动态调用对象方法 */ public class JD…

caffe专题五——回归中——检测框架

https://blog.csdn.net/runner668/article/details/80436850

深入理解卷积层,全连接层的作用意义

有部分内容是转载的知乎的&#xff0c;如有侵权&#xff0c;请告知&#xff0c;删除便是&#xff0c;但由于是总结的&#xff0c;所以不一一列出原作者是who。 再次感谢&#xff0c;也希望给其他小白受益。 首先说明&#xff1a;可以不用全连接层的。 理解1&#xff1a; 卷…

用ionic快速开发hybird App(已附源码,在下面+总结见解)

用ionic快速开发hybird App&#xff08;已附源码,在下面总结见解&#xff09; 1.ionic简介 ionic 是用于敏捷开发APP的解决方案。核心思路是&#xff1a;利用成熟的前端开发技术&#xff0c;来写UI和业务逻辑。也就是说&#xff0c;就是一个H5网站&#xff0c;这个区别于react-…

为什么要使用工厂模式

工厂的作用相当于帮助我们完成实例化的操作。 优势1&#xff1a;一般在代码中&#xff0c;实例化一个类A是直接new A&#xff08;&#xff09;&#xff0c;假如类A是一个完全独立的类&#xff0c;没有相似类&#xff0c;则没有必要使用工厂模式&#xff0c;直接new A&#xff…

css各兼容应该注意的问题

1.div布局在ie浏览器和chrome浏览器&#xff0c;firefox浏览器不同&#xff0c;不如在div里面嵌套3个div&#xff0c;分别左中右&#xff0c;左边div的pading和margin在ie8以上都是几乎相同&#xff0c;ie8以下做内边距x2&#xff0c;在中间的div在chrome和fierfox中默认在左边…

转 C++宏定义详解

来自&#xff1a;传送门 C宏定义详解 一、#define的基本用法 #define是C语言中提供的宏定义命令&#xff0c;其主要目的是为程序员在编程时提供一定的方便&#xff0c;并能在一定程度上提高程序的运行效率&#xff0c;但学生在学习时往往不能 理解该命令的本质&#xff0c;总是…

acm之vim的基本配置

http://www.kuangbin.net/archives/vim-acmicpc 转载于:https://www.cnblogs.com/akrusher/articles/5402426.html