OpenCV实例(九)基于深度学习的运动目标检测(二)YOLOv2概述

基于深度学习的运动目标检测(二)YOLOv2&YOLOv3概述

  • 1.YOLOv2概述
  • 2.YOLOv3概述
    • 2.1 新的基础网络结构:
    • 2.2 采用多尺度预测机制。
    • 2.3 使用简单的逻辑回归进行分类

1.YOLOv2概述

对YOLO存在的不足,业界又推出了YOLOv2。YOLOv2主要通过以下方法对模型进行优化:

(1)使用Batch Normalization方法对模型中每一个卷积层的输入进行归一化,缓解梯度消失,加快收敛速度,减少了训练时间,同时提高了平均检测准确率。

(2)增加Anchors机制,借助训练集的边框标签值,使用k-means聚类的方法生成几种不同尺寸的Anchors。YOLOv2去掉了YOLO网络中的全连接层和最后一个池化层,以提高特征的分辨率;在最后一层卷积采样后使用Anchors机制,旨在提高IoU。训练时,在每个网格上预置Anchors,以这些Anchors为基准计算损失函数。

(3)提出一个新的基础网络结构:Darknet-19。Darknet-19是一个全卷积网络,相比YOLO的主体结构,它用一个average pooling层代替全连接层,有利于更好地保留目标的空间位置信息。

(4)采用优化的直接位置预测方法,根据设定的Anchors,在网络最后一个卷积层输出的特征图上,对每个网格进行边框预测,先预测tx、ty、tw、th、to这5个值,然后根据这5个值计算预测边框的位置信息和置信度。

通过以上改进,YOLOv2在平均检测准确率和训练检测速度方面较YOLO均有明显的提高。作为一个中间版本,我们了解即可。

2.YOLOv3概述

为了进一步提高性能,人们又提出了YOLOv3。相比前两个版本,YOLOv3在分类方法、网络结构方面做了较大改进,具体实现如下:

2.1 新的基础网络结构:

Darknet-53。Darknet-53共有75层,使用了一系列3×3、1×1的卷积,其中包括53层卷积层,其余为res层,借鉴ResNet(Residual Network,残差网络)的思想,采用跳层连接的方式进一步优化网络性能。Darknet-53的网络结构如图所示。

在这里插入图片描述
在深度学习中,越是深层次的网络越容易出现梯度消失,导致网络退化,即使使用了Batch Normalization等方法,效果依然不太理想。2015年,Kaiming He等人提出ResNet,在当年的ILSVRC比赛中获得了冠军。ResNet的主要思想是在网络结构中增加了“直连通道”,将某层的原始输出直接传递到后面的层中,这种跳层连接结构能减少原始信息在传递过程中的损耗,在一定程度上缓解了深度神经网络中的梯度消失问题。ResNet的原理如图所示。

在这里插入图片描述
在ResNet中,如果用xl和xl+1分别表示第l层的输入和输出,Wl表示第l层的权重,F表示该层的残差函数,则xl和xl+1之间的关系可以表示为:xl+1=xl+F(xl,Wl)。如果网络以这样的结构学习到第L层,以xL表示第L层的输入xL和xl之间的关系可表达为:

在这里插入图片描述
从而求得在此反向传递过程中损失函数的梯度:

在这里插入图片描述
从上面公式括号里的两项可以看出,1保证了梯度可以无损地传递,第二项的大小由网络权重决定,并且该项再小也不会导致梯度消失的问题。由此可见,ResNet对原始输入信息的学习更容易、更准确。

Darknet-53通过引入res层,将整个网络分成若干个小的ResNet结构单元,通过逐级对残差的学习来控制梯度的传播,以此来缓解训练中的梯度消失。

2.2 采用多尺度预测机制。

YOLOv3沿用了YOLOv2中的Anchors机制,使用k-means方法聚类出9种大小不同的Anchors。为了充分利用这些Anchors,YOLOv3进一步细化网格划分,将Anchors按大小平均分配给3种scale。

· scale1:在Darknet-53后添加6层卷积层,直接得到用以检测目标的特征图,维度为13×13×(B×5+C),对应最大的3种Anchors,适用于大目标检测。

· sale2:对网络第79层的输出进行上采样,生成26×26×(B×5+C)的特征图,同时与第61层输出的特征图合并,再进行一系列的卷积操作,最终得到的特征图对应3个中等大小的Anchors,适用于中目标检测。

· scale3:对网络第91层的输出进行上采样,生成52×52×(B×5+C)的特征图,先与第36层输出的特征图合并,再进行系列卷积,最终得到与3个最小的Anchors对应的特征图,适用于小目标检测。通过这样的改进,YOLOv3相比YOLOv2,在小目标检测效果上有了较为明显的提高。

2.3 使用简单的逻辑回归进行分类

分类损失函数采用了binary cross-entropy loss(二值交叉熵损失),而且不再使用softmax进行分类。在softmax分类中,得分最高的预测边框获得一个分类,但是在很多情况下(尤其是在对有遮挡或重叠的多目标检测时)softmax并不适合。

通过不断的改进与创新,YOLOv3使基于回归思想的YOLO系列模型的性能达到了一个峰值,最大限度地兼顾了检测的实时性和准确率,为危险物品的实时检测和跟踪、自动驾驶的环境信息采集等对实时性和准确率要求都较高的应用领域提供了非常有参考、研究价值的可靠模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

宝藏级画图工具-drawio

今天推荐一款非常好用的免费开源画图工具drawio. Drawio即可以下载安装到本地,也可以在线编辑,在线编辑网址为 https://app.diagrams.net/。 本地版下载地址为https://github.com/jgraph/drawio-desktop/releases 1、支持各类图形 Drawio可以非常便捷…

java知识-JVM线程四大引用

一、JVM (1) 基本概念: JVM 是可运行 Java 代码的假想计算机 ,包括一套字节码指令集、一组寄存器、一个栈、 一个垃圾回收,堆 和 一个存储方法域。JVM 是运行在操作系统之上的,它与硬件没有直接 的交互。 (2) 运行过程&#x…

excel中有哪些通配符、excel配置问题,数学函数篇1之sum系列

学习excel前需要明确的是事:   在学习excel函数之前,大家需要明确一件事,excel现在设计到了一些新函数,这些新函数只能存在于office365、office2019及更 新版本之中,所以建议大家在学习时安装较新的版本,…

华为OD机试关于无输入截止条件的ACM输入逻辑

无输入截止条件的ACM输入 华为OD机试题中有一些题目是没有输入截止条件的,比如 华为OD机试 - 数字游戏(Java & JS & Python)_伏城之外的博客-CSDN博客 从输入描述来看,每组有两行输入,但是并没有告诉我们具体有几组? 那么输入该如何截止呢? 此时,有两种输入…

硬编码基础二(跳转相关)

硬编码基础二(跳转相关) 今天的指令都是跟eip的变动有关 JCC短跳系列跳转 这一系列是条件跳转指令也都是两字节定长,第一个字节是opcode也是跳转条件后一个字节是有符号的偏移长度,当条件成立时会跳转到当前eip 2 操作数的位置 70~7f是…

Ctfshow web入门 权限维持篇 web670-web679 详细题解 全

CTFshow 权限维持 web670【】 补充一下PHP中单双引号的区别: 单引号和双引号之间最显着的区别在于我们插入字符串和变量时。单引号不插入字符串和变量。**单引号内的内容会按原样打印出来。**在大多数情况下,单引号内没有任何变量或转义序列的编译。 …

JVM中释放内存的三种方法

判断是否需要垃圾回收可以采用分析。 1标记--清除算法 分为两个阶段,标记和清除,先利用可达性分型标记还存活的对象,之后将没有被标记的对象删除,这样容易生成空间碎片,而且效率不稳定 标记阶段: 标记阶段…

Appium 2安装与使用java对Android进行自动化测试

文章目录 1、Appium 2.1安装1.1、系统要求1.2、安装Appium2.1服务1.3、安装UiAutomator2驱动1.4、安装Android SDK platform tools1.5、下载OpenJDK 2、Android自动代码例子2.1、安装Android自动化测试元素定位工具Appium Inspector2.2、编写android app自动化测试代码和使用ex…

飞机打方块(二)游戏界面制作

一、背景 1.新建bg节点 二、飞机节点功能实现 1.移动 1.新建plane节点 2.新建脚本GameController.ts,并绑定Canvas GameControll.ts const { ccclass, property } cc._decorator;ccclass export default class NewClass extends cc.Component {property(cc.Node)canvas:…

uniapp编写微信小程序和H5遇到的坑总结

uniapp编写微信小程序和H5遇到的坑总结 1、阻止事件冒泡2、二维码生成3、H5跨域配置4、H5时,地址栏上添加版本号5、H5时,tabBar遮挡部分内容6、uniapp使用webview通信6.1、uniapp编写的小程序嵌入h5之间的通信6.1.1、小程序向h5发送消息6.1.2、h5向小程序…

前端大屏常用的适配方案

假设我们正在开发一个可视化拖拽的搭建平台,可以拖拽生成工作台或可视化大屏,或者直接就是开发一个大屏,首先必须要考虑的一个问题就是页面如何适应屏幕,因为我们在搭建或开发时一般都会基于一个固定的宽高,但是实际的…

websocket + stomp + sockjs学习

文章目录 学习链接后台代码引入依赖application.ymlWebSocketConfigPrivateControllerWebSocketService WebSocketEventListenerCorsFilter 前端代码Room.vue 学习链接 WebSocket入门教程示例代码,代码地址已fork至本地gitee,原github代码地址&#xff…

STM32--DMA

文章目录 DMA简介DMA特性 DMA框图DMA基本结构DMA请求数据宽度对齐DMA数据转运工程DMAADC多通道 DMA简介 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的…

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

完整代码: import torch import torchvision from PIL import Image from torch import nnimage_path "../imgs/dog.png" image Image.open(image_path) print(image)# 因为png格式是四个通道,除了RGB三通道外,还有一个透明度通…

字符设备驱动实例(ADC驱动)

四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…

差值结构的复合底部

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。 其中有20组数据 让迭代次数与排斥能成反比,排…

第 7 章 排序算法(3)(选择排序)

7.6选择排序 7.6.1基本介绍 选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。 7.6.2选择排序思想: 选择排序(select sorting)也是一种简单的排序方法…

装饰器读取不到被装饰函数的参数-已解决

def write_case_log(func):def wrapper(*args, **kwargs):logger.info("{}开始执行".format(func.__name__))func(*args,**kwargs)logger.info("{}执行中".format(args))logger.info("{}执行结束",format(func.__name__))return wrapper被装饰函…

每天一道leetcode:剑指 Offer 34. 二叉树中和为某一值的路径(中等图论深度优先遍历递归)

今日份题目: 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例1 输入:root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSu…

PyCharm连接Docker中的容器(ubuntu)

一、为什么要用Pycharm链接Docker中的ubuntu 因为在进行深度学习的时候,基于windows系统在开发的过程中,老是出现很多问题,大多数是环境问题。 尽管安装了Conda,也不能很好的解决问题,使用ubuntu是最好的选择。 二、…