IO模型

IO模型介绍

传统的网络IO模型包括五种:

  • blocking IO           阻塞IO
  • nonblocking IO      非阻塞IO
  • IO multiplexing      IO多路复用
  • signal driven IO     信号驱动IO
  • asynchronous IO    异步IO

由于signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。

再说一下IO发生时涉及的对象和步骤。对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,该操作会经历两个阶段:

#1)等待数据准备 (Waiting for the data to be ready),数据拷贝到内核
#2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)

  记住这两点很重要,因为这些IO模型的区别就是在两个阶段上各有不同的情况。

阻塞IO(blocking IO)

  在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

 

 

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。

而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。

所以,blocking IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了。

几乎所有的程序员第一次接触到的网络编程都是从listen()、send()、recv() 等接口开始的,使用这些接口可以很方便的构建服务器/客户机的模型。然而大部分的socket接口都是阻塞型的。如下图

    ps:所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或者超时出错时才返回。

      

  实际上,除非特别指定,几乎所有的IO接口 ( 包括socket接口 ) 都是阻塞型的。这给网络编程带来了一个很大的问题,如在调用recv(1024)的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。

一个简单的解决方案:

在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。

该方案的问题是:

开启多进程或都线程的方式,在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。

改进方案:

很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接、减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多大型系统,如websphere、tomcat和各种数据库等。

改进后方案存在问题:

“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

    对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

非阻塞IO(non-blocking IO)

Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

  

  从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可以在本次到下次再发起read询问的时间间隔内做其他事情,或者直接再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),然后返回。

也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。

#服务端
from socket import *
import time
s=socket(AF_INET,SOCK_STREAM)
s.bind(('127.0.0.1',8080))
s.listen(5)
s.setblocking(False) #设置socket的接口为非阻塞
conn_l=[]
del_l=[]
while True:try:conn,addr=s.accept()conn_l.append(conn)except BlockingIOError:print(conn_l)for conn in conn_l:try:data=conn.recv(1024)if not data:del_l.append(conn)continueconn.send(data.upper())except BlockingIOError:passexcept ConnectionResetError:del_l.append(conn)for conn in del_l:conn_l.remove(conn)conn.close()del_l=[]#客户端
from socket import *
c=socket(AF_INET,SOCK_STREAM)
c.connect(('127.0.0.1',8080))while True:msg=input('>>: ')if not msg:continuec.send(msg.encode('utf-8'))data=c.recv(1024)print(data.decode('utf-8'))

但是非阻塞IO模型绝不被推荐。

我们不能否则其优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在“”同时“”执行)。 但是也难掩其缺点:

  • 循环调用recv()将大幅度推高CPU占用率;这也是我们在代码中留一句time.sleep(2)的原因,否则在低配主机下极容易出现卡机情况
  • 任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

    此外,在这个方案中recv()更多的是起到检测“操作是否完成”的作用,实际操作系统提供了更为高效的检测“操作是否完成“作用的接口,例如select()多路复用模式,可以一次检测多个连接是否活跃。

多路复用IO(IO multiplexing)

  IO multiplexing这个词可能有点陌生,但是如果我说select/epoll,大概就都能明白了。有些地方也称这种IO方式为事件驱动IO(event driven IO)。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

这个图和blocking IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用(select和recvfrom),而blocking IO只调用了一个系统调用(recvfrom)。但是,用select的优势在于它可以同时处理多个connection。

强调:

  • 如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。
  • 在多路复用模型中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。
  • 结论: select的优势在于可以处理多个连接,不适用于单个连接 

select网络IO模型

#服务端
from socket import *
import selects=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind(('127.0.0.1',8081))
s.listen(5)
s.setblocking(False) #设置socket的接口为非阻塞
read_l=[s,]
while True:r_l,w_l,x_l=select.select(read_l,[],[])print(r_l)for ready_obj in r_l:if ready_obj == s:conn,addr=ready_obj.accept() #此时的ready_obj等于sread_l.append(conn)else:try:data=ready_obj.recv(1024) #此时的ready_obj等于connif not data:ready_obj.close()read_l.remove(ready_obj)continueready_obj.send(data.upper())except ConnectionResetError:ready_obj.close()read_l.remove(ready_obj)#客户端
from socket import *
c=socket(AF_INET,SOCK_STREAM)
c.connect(('127.0.0.1',8081))while True:msg=input('>>: ')if not msg:continuec.send(msg.encode('utf-8'))data=c.recv(1024)print(data.decode('utf-8'))select网络IO模型

select监听fd变化的过程分析:

  • 用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到;
  • 用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。

    该模型的优点:

相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

    该模型的缺点:

  • 首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。
  • 很多操作系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。
  • 如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异,
  • 所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。
  • 其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。

epoll和select对比

select不足的地方:
1 每次select都要把全部IO句柄复制到内核
2 内核每次都要遍历全部IO句柄,以判断是否数据准备好
3 select模式最大IO句柄数是1024,太多了性能下降明显

epoll 在Linux内核中申请了简易的文件系统,调用epoll_create建立一个eventpoll结构体,其中类型为红黑树的属性rbr用于存epoll_ctl方法添加的事件,所有添加进来的事件 发生时 会调用回调方法ep_poll-callback将事件放入到rdllist双向链表,调用epoll_wait检查双向链表是否有epitem元素,如果不为空则将事件直接复制到用户态内存空间 时间复杂度为O(1) 没有限制 内存拷贝跳过内核缓存区

epoll的特点
1 epoll 在Linux内核中申请了简易的文件系统,每次新建IO句柄(epoll_create)才复制并注册(epoll_register)到内核
2 内核根据IO事件,把准备好的IO句柄放到就绪队列
3 应用只要轮询(epoll_wait)就绪队列,然后去读取数据
只需要轮询就绪队列(数量少),不存在select的轮询,也没有内核的轮询,不需要多次复制所有的IO句柄。因此,可以同时支持的IO句柄数轻松过百万

信号驱动IO模型

  在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个SIGIO信号给用户线程,用户线程接收到信号之后,便在信号函数中调用recvfrom来进行实际的IO请求操作。这个一般用于UDP中,对TCP套接口几乎是没用的,原因是该信号产生得过于频繁,并且该信号的出现并没有告诉我们发生了什么事情。特点:等待数据报到达期间进程不被阻塞。主循环可以继续执行,只要等待来自信号处理函数的通知:既可以是数据已准备好被处理,也可以是数据报已准备好被读取

异步IO(Asynchronous I/O)

Linux下的asynchronous IO其实用得不多,从内核2.6版本才开始引入。先看一下它的流程:

  用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

IO模型比较分析

blocking和non-blocking的区别在于:调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

synchronous IO和asynchronous IO两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,四个IO模型可以分为两大类,之前所述的blocking IO,non-blocking IO,IO multiplexing,信号驱动IO 都属于synchronous IO这一类,而 asynchronous I/O后一类 。

有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

  

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

selectors模块

IO复用:为了解释这个名词,首先来理解下复用这个概念,复用也就是共用的意思,这样理解还是有些抽象,为此,咱们来理解下复用在通信领域的使用,在通信领域中为了充分利用网络连接的物理介质,往往在同一条网络链路上采用时分复用或频分复用的技术使其在同一链路上传输多路信号,到这里我们就基本上理解了复用的含义,即公用某个“介质”来尽可能多的做同一类(性质)的事,那IO复用的“介质”是什么呢?为此我们首先来看看服务器编程的模型,客户端发来的请求服务端会产生一个进程来对其进行服务,每当来一个客户请求就产生一个进程来服务,然而进程不可能无限制的产生,因此为了解决大量客户端访问的问题,引入了IO复用技术,即:一个进程可以同时对多个客户请求进行服务。也就是说IO复用的“介质”是进程(准确的说复用的是select和poll,因为进程也是靠调用select和poll来实现的),复用一个进程(select和poll)来对多个IO进行服务,虽然客户端发来的IO是并发的但是IO所需的读写数据多数情况下是没有准备好的,因此就可以利用一个函数(select和poll)来监听IO所需的这些数据的状态,一旦IO有数据可以进行读写了,进程就来对这样的IO进行服务。

理解完IO复用后,我们在来看下实现IO复用中的三个API(select、poll和epoll)的区别和联系

select,poll,epoll都是IO多路复用的机制,I/O多路复用就是通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知应用程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。三者的原型如下所示:

  • int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
  • int poll(struct pollfd *fds, nfds_t nfds, int timeout);
  • int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

select的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。第二三四参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件,所以每次调用select前都需要重新初始化fdset。timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。

 select的调用步骤如下:

  1. 使用copy_from_user从用户空间拷贝fdset到内核空间
  2. 注册回调函数__pollwait
  3. 遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)
  4. 以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。
  5. __pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll 来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数 据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。
  6. poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。
  7. 如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是 current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout 指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。
  8. 把fd_set从内核空间拷贝到用户空间。

select的几大缺点:

  • 每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
  • 同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大
  • select支持的文件描述符数量太小了,默认是1024

poll与select不同,通过一个pollfd数组向内核传递需要关注的事件,故没有描述符个数的限制,pollfd中的events字段和revents分别用于标示关注的事件和发生的事件,故pollfd数组只需要被初始化一次。

poll的实现机制与select类似,其对应内核中的sys_poll,只不过poll向内核传递pollfd数组,然后对pollfd中的每个描述符进行poll,相比处理fdset来说,poll效率更高。poll返回后,需要对pollfd中的每个元素检查其revents值,来得指事件是否发生。

直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll 和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函 数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注 册要监听的事件类型;epoll_wait则是等待事件的产生。

  对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定 EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝 一次。

  对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在 epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调 函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用 schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。

  对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子, 在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

总结:

  1. select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用 epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在 epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的 时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间,这就是回调机制带来的性能提升。
  2. select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要 一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内 部定义的等待队列),这也能节省不少的开销。

这三种IO多路复用模型在不同的平台有着不同的支持,而epoll在windows下就不支持,好在我们有selectors模块,帮我们默认选择当前平台下最合适的

# 基于selectors模块实现聊天
# 服务端
from socket import *
import selectorssel=selectors.DefaultSelector()def accept(server_fileobj,mask):conn,addr=server_fileobj.accept()sel.register(conn,selectors.EVENT_READ,read)def read(conn,mask):try:data=conn.recv(1024)if not data:print('closing',conn)sel.unregister(conn)conn.close()returnconn.send(data.upper()+b'_SB')except Exception:print('closing', conn)sel.unregister(conn)conn.close()server_fileobj=socket(AF_INET,SOCK_STREAM)
server_fileobj.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server_fileobj.bind(('127.0.0.1',8088))
server_fileobj.listen(5)
server_fileobj.setblocking(False)  # 设置socket的接口为非阻塞
sel.register(server_fileobj,selectors.EVENT_READ,accept)  # 相当于往select的读列表里append了一个文件句柄server_fileobj,并且绑定了一个回调函数acceptwhile True:events=sel.select()        # 检测所有的fileobj,是否有完成wait data的for sel_obj,mask in events:callback=sel_obj.data  # callback=accpetcallback(sel_obj.fileobj,mask)  # accpet(server_fileobj,1)#客户端
from socket import *
c=socket(AF_INET,SOCK_STREAM)
c.connect(('127.0.0.1',8088))while True:msg=input('>>: ')if not msg:continuec.send(msg.encode('utf-8'))data=c.recv(1024)print(data.decode('utf-8'))

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/454385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重温数据结构:树 及 Java 实现(转)

转自:http://blog.csdn.net/u011240877/article/details/53193877 读完本文你将了解到: 什么是树树的相关术语 根节点父亲节点孩子节点叶子节点如上所述节点的度树的度节点的层次树的高度树的深度树的两种实现 数组表示链表表示的节点树的几种常见分类及…

Powershell检测AD账户密码过期时间并邮件通知

脚本主要实现了两个功能 : 一能判断账户密码的过期时间并通过邮件通知到账户; 二是将这些即将过期的账户信息累计通知到管理员。 脚本如下: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051…

js list删除指定元素_vue.js

vue.js 中M V MV代表哪一部分 <插值表达式&#xff08;v-cloak v-text v-html v-bind&#xff08;缩写是:&#xff09; v-on&#xff08;缩写是&#xff09; v-model v-for v-if v-show &#xff09;<body><div id"app"><!-- 使用 v-cloak 能够解决…

我们的系统检测到您的计算机网络中存在异常流量_如何建立我们的网络防线?入侵检测,确保我们的网络安全...

目前我们的网络安全趋势日益严峻&#xff0c;那么如何利用入侵检测系统确保我的网络安全呢&#xff1f;入侵检测又是什么呢&#xff1f;网络安全入侵检测技术是为保证计算机系统的安全&#xff0c;而设计与配置的一种能够及时发现并报告系统中未授权或异常现象的技术&#xff0…

mybatis $和#源代码分析

JDBC中&#xff0c;主要使用两种语句&#xff0c;一种是支持参数化和预编译的PreparedStatement,支持原生sql,支持设置占位符&#xff0c;参数化输入的参数&#xff0c;防止sql注入攻击&#xff0c;在mybatis的mapper配置文件中&#xff0c;我们通过使用#和$告诉mybatis我们需要…

git 命令详解和常见问题解决

功能一 提交&#xff1a;1:git init # 初始化&#xff0c;表示即将对当前文件夹进行版本控制2:git status # 查看Git当前状态&#xff0c;如&#xff1a;那些文件被修改过、那些文件还未提交到版本库等。3:git add . # 添加当前目录下所有文件到版本…

excel vba 调用webbrowser_VBA 公式与函数

一, 在单元格中输入公式的3种方法:1) 用VBA在单元格中输入普通公式Sub formula_1() Range("d2") ("B2 * C2") End Sub运行程序后,在D2的单元格内显示的是公式 B2 * C2 ,并非程序返回值.下文(二)中会介绍另外一种直接返回值的方式想要通过程序一…

松下NPM服务器怎么备份系统,松下(Panasonic)-NPM校正amp;CPK完整版教程,一步步带你成为SMT设备大神!...

马上注册&#xff0c;结交更多技术专家&#xff0c;享用更多功能&#xff0c;让你轻松解决各种三星贴片机问题您需要 登录 才可以下载或查看&#xff0c;没有帐号&#xff1f;立即注册 xa8f80375060fa05b8aebe69ffa21080c.gif (5.26 KB, 下载次数: 3)2019-8-12 00:02 上传f5aae…

Python 模块之科学计算 Pandas

目录 一、Pandas简介 数据结构 二、Series series 的创建 Series值的获取 Series的运算 Series缺失值检测 Series自动对齐 Series及其索引的name属性 三、DataFrame 创建 Index对象 通过索引值或索引标签获取数据 自动化对齐 四、文件操作 文件读取 数据库数据…

机器学习中qa测试_如何对机器学习做单元测试

作者&#xff1a;Chase Roberts编译&#xff1a;ronghuaiyang导读养成良好的单元测试的习惯&#xff0c;真的是受益终身的&#xff0c;特别是机器学习代码&#xff0c;有些bug真不是看看就能看出来的。在过去的一年里&#xff0c;我把大部分的工作时间都花在了深度学习研究和实…

一个从文本文件里“查找并替换”的功能

12345678910111213141516171819202122232425# -*- coding: UTF-8 -*-file input("请输入文件路径:") word1 input("请输入要替换的词:") word2 input("请输入新的词&#xff1a;") fopen(file,"r") AAAf.read() count 0 def BBB()…

机器学习算法之 KNN

K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了&#xff0c;在我们平常的生活中也会不自主的应用。比如&#xff0c;我们判断一个人的人品&#xff0c;只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类&…

安装云端服务器操作系统,安装云端服务器操作系统

安装云端服务器操作系统 内容精选换一换SAP云服务器规格在申请SAP ECS之前&#xff0c;请参考SAP标准Sizing方法进行SAPS值评估&#xff0c;并根据Sizing结果申请云端ECS服务器资源&#xff0c;详细信息请参考SAP Quick Sizer。SAP 各组件最低硬盘空间、RAM&#xff0c;以及软件…

python 进度条_六种酷炫Python运行进度条

转自&#xff1a;一行数据阅读文本大概需要 3 分钟你的代码进度还剩多少&#xff1f;今天给大家介绍下目前6种比较常用的进度条&#xff0c;让大家都能直观地看到脚本运行最新的进展情况。1.普通进度条2.带时间进度条3.tpdm进度条4.progress进度条5.alive_progress进度条6.可视…

权限之浅理解

白马过隙&#xff0c;在感叹时光流逝的同时不得不承认在学习中随着知识面的不断扩展所接受的东西也越来越多&#xff0c;尤其是那些外形比较容易混淆的命令&#xff0c;着实让作为新手的吃了很多苦头&#xff0c;趁着学习紧张之时偷个懒整理这周易混淆的命令&#xff1a; chgrp…

机器学习算法之生成树

一、什么是决策树&#xff1f; 决策树&#xff08;Decision Tree&#xff09;是一种基本的分类和回归的方法。 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点&#xff08;node&#xff09;和有向边&#xff08;directed edge&#xff09;组成。结点有两种…

机器学习算法之集成学习

集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5)。 集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的算法也能够得到一个比较明显…

常用的方法论-NPS

转载于:https://www.cnblogs.com/qjm201000/p/7687510.html

controller调用controller的方法_SpringBoot 优雅停止服务的几种方法

转自&#xff1a;博客园&#xff0c;作者&#xff1a;黄青石www.cnblogs.com/huangqingshi/p/11370291.html 在使用 SpringBoot 的时候&#xff0c;都要涉及到服务的停止和启动&#xff0c;当我们停止服务的时候&#xff0c;很多时候大家都是kill -9 直接把程序进程杀掉&#x…

机器学习之聚类概述

什么是聚类 聚类就是对大量未知标注的数据集&#xff0c;按照数据 内部存在的数据特征 将数据集划分为 多个不同的类别 &#xff0c;使 类别内的数据比较相似&#xff0c;类别之间的数据相似度比较小&#xff1b;属于 无监督学习。 聚类算法的重点是计算样本项之间的 相似度&…